[1] |
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]. Amsterdam: Proceedings of the European Conference on Computer Vision, 2016:21-37.
|
[2] |
Molchanov P, Mallya A, Tyree S, et al. Importance estimation for neural network pruning[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11264-11272.
|
[3] |
Chen Z, Zhang L, Cao Z, et al. Distilling the knowledge from handcrafted features for human activity recognition[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10):4334-4342.
doi: 10.1109/TII.2018.2789925
|
[4] |
Yin P H, Zhang S, Qi Y, et al. Quantization and training of low bit-width convolutional neural networks for object detection[J]. Mathematica Numerica Sinica, 2019, 37(3):349-359.
|
[5] |
Lee H J, Ullah I, Wan W, et al. Real-time vehicle make and model recognition with the residual SqueezeNet architecture[J]. Sensors, 2019, 19(5):982-997.
doi: 10.3390/s19050982
|
[6] |
Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]. Long Beach: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:1314-1324.
|
[7] |
Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:6848-6856.
|
[8] |
Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:1580-1589.
|
[9] |
Li Y, Lü C. SS-YOLO: An object detection algorithm based on YOLOv3 and ShuffleNet[C]. Chongqing: Proceedings of the IEEE Fourth Information Technology, Networking, Electronic and Automation Control Conference, 2020:769-772.
|
[10] |
Farhadi A, Redmon J. YOLOv3: An incremental improvement[C]. Berlin: Proceedings of the Computer Vision and Pattern Recognition, 2018:1-12
|
[11] |
冯媛, 李敬兆. 改进的卷积神经网络行人检测方法[J]. 计算机工程与设计, 2020, 41(5):1452-1457.
|
|
Feng Yuan, Li Jingzhao. Improved convolutional neural network pedestrian detection method[J]. Computer Engineering and Design, 2020, 41(5):1452-1457.
|
[12] |
靳丽蕾, 杨文柱, 王思乐, 等. 一种用于卷积神经网络压缩的混合剪枝方法[J]. 小型微型计算机系统, 2018, 39(12):2596-2601.
|
|
Jin Lilei, Yang Wenzhu, Wang Sile, et al. A hybrid pruning method for convolutional neural network compression[J]. Small Microcomputer Systems, 2018, 39(12):2596-2601.
|
[13] |
成凌飞, 贺扬, 张培玲, 等. 压缩深层神经网络隐藏层维度对其分类性能的影响[J]. 电子科技, 2019, 32(1):72-75.
|
|
Cheng Lingfei, He Yang, Zhang Peiling, et al. Effect of hidden layer dimension on classification performance of compressed deep neural network[J]. Electronic Science and Technology, 2019, 32(1):72-75.
|
[14] |
邵伟平, 王兴, 曹昭睿, 等. 基于MobileNet与YOLOv3的轻量化卷积神经网络设计[J]. 计算机应用, 2020, 40(S1):8-13.
|
|
Shao Weiping, Wang Xing, Cao Zhaorui, et al. Design of lightweight convolutional neural network based on MobileNet and YOLOv3[J]. Computer Applications, 2020, 40(S1):8-13.
|
[15] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020:1-10.
|
[16] |
Chollet F. Xception: Deep learning with depthwise separable convolutions[C]. Holunono: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:1251-1258.
|
[17] |
Devi T, Deepa N. A novel intervention method for aspect-based emotion using exponential linear unit activation function in a deep neural network[C]. Madurai: Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems, 2021: 1671-1675.
|
[18] |
Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020:390-391.
|
[19] |
Wang K, Liew J H, Zou Y, et al. Panet: Few-shot image semantic segmentation with prototype alignment[C]. Long Beach: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:9197-9206.
|
[20] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
|