电子科技 ›› 2023, Vol. 36 ›› Issue (5): 47-54.doi: 10.16180/j.cnki.issn1007-7820.2023.05.008

• • 上一篇    下一篇

一种基于加性潜变量的扩维卡尔曼滤波方法

林志鹏1,孙晓辉1,文成林2   

  1. 1.杭州电子科技大学 自动化学院,浙江 杭州 310018
    2.广东石油化工学院 自动化学院,广东 茂名 525000
  • 收稿日期:2021-11-23 出版日期:2023-05-15 发布日期:2023-05-17
  • 作者简介:林志鹏(1996-),男,硕士研究生。研究方向:非线性滤波器的设计和应用。|孙晓辉(1993-),女,博士研究生。研究方向:非线性系统滤波器设计。|文成林(1963-),男,博士,教授。研究方向:多尺度估计理论、多传感器信息融合、深度学习、故障诊断理论与应用等。
  • 基金资助:
    国家自然科学基金(61751304)

An Extended Dimension Kalman Filter Method Based on Additive Hidden Variables

LIN Zhipeng1,SUN Xiaohui1,WEN Chenglin2   

  1. 1. School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China
    2. School of Automation,Guangdong University of Petrochemical Technology,Maoming 525000,China
  • Received:2021-11-23 Online:2023-05-15 Published:2023-05-17
  • Supported by:
    National Natural Science Foundation of China(61751304)

摘要:

现有面对非线性系统所设计的卡尔曼滤波器的性能常随着非线性程度的增强而逐步退化。为了弥补扩展卡尔曼滤波和无迹卡尔曼滤波在线性化过程中的不足之处,文中针对一类由线性项和非线性项累加组成的强非线性系统,建立了一种基于潜变量的扩维卡尔曼滤波方法。该方法将非线性项定义为原始系统的潜变量,并建立了关于潜变量的线性动态关联模型,将潜变量扩维到系统原始的状态变量中,从而建立以原始变量和潜变量为基础的线性系统模型。最后设计出该类系统的高阶扩维卡尔曼滤波器,并经过MATLAB仿真验证了新设计滤波器的有效性与准确性。

关键词: 非线性, 扩展卡尔曼滤波器, 无迹卡尔曼滤波器, 线性化, 潜变量, 动态关联模型, 扩维, 状态变量

Abstract:

The performance of Kalman filters designed for nonlinear systems often degrades with the increase of nonlinear degree. In order to make up for the shortcomings of extended Kalman filter and unscented Kalman filter in the online process, this study proposes an extended dimension Kalman filter method based on hidden variable for a class of strongly nonlinear systems composed of the accumulation of linear and non-linear terms. In this method, the nonlinear term is defined as the hidden variable of the original system, and the linear dynamic correlation model about the hidden variable is established. The hidden variable is extended to the original state variable of the system, so as to establish the linear system model based on the original variable and hidden variable. Finally, the high-order extended dimension Kalman filter of this kind of system is designed. Through MATLAB simulation, the effectiveness and accuracy of the performance of the designed filter are verified.

Key words: nonlinearity, extended Kalman filter, unscented Kalman filter, linearization, hidden variable, dynamic correlation model, dimension expansion, state variable

中图分类号: 

  • TP273