[1] |
张榜. X-DSP IP核Power函数部件的设计与验证[D]. 长沙: 国防科技大学, 2017:1-4.
|
|
Zhang Bang. Design and validation of the components of power function in IP core of X-DSP[D]. Changsha: National University of Defense Technology, 2017:1-4.
|
[2] |
张俊. 高精度浮点指数和对数函数硬件设计[D]. 深圳: 哈尔滨工业大学, 2018:1-4,45-47.
|
|
Zhang Jun. High precision floating point exponent and logarithmic function haradware design[D]. Shenzhen: Harbin Institute of Technology, 2018:1-4,45-47.
|
[3] |
史雄伟, 王成, 张春雷, 等. 基于 FPGA 的浮点指数函数算法研究与实现[J]. 计算机测量与控制, 2017, 25(10): 221-223.
|
|
Shi Xiongwei, Wang Cheng, Zhang Chunlei, et al. Algor-ithm research and implementation of float point expontial function based on FPGA[J]. Computer Measurement and Control, 2017, 25(10):221-223.
|
[4] |
王鸿闯, 胡晓辉, 李薇. 一种基于改进阈值函数Contourlet域的图像去噪算法[J]. 电子科技, 2019, 32(4):44-48.
|
|
Wang Hongchuang, Hu Xiaohui, Li Wei. An image denoising algorithm based on improved threshold function contourlet domain[J]. Electronic Science and Technology, 2019, 32(4):44-48.
|
[5] |
耿昭谦, 朱虎明, 李旭明, 等. 基于高性能计算的雷达信号处理研究综述[J]. 电子科技, 2021, 34(9):1-6.
|
|
Geng Zhaoqian, Zhu Huming, Li Xuming, et al. A review:Radar signal processing based on high performance computing[J]. Electronic Science and Technology, 2021, 34(9):1-6.
|
[6] |
Pineiro J A, Ercegovac M D, Bruguera J D. Algorithm and architecture for logarithm,exponential and powering computation[J]. IEEE Transactions on Computers, 2004, 53(9):1085-1096.
doi: 10.1109/TC.2004.53
|
[7] |
Piso D, Piñeiro J A, Bruguera J D. Analysis of the impact of different methods for division/square root computation in the performance of a superscalar micro processor[J]. Journal of Systems Architecture, 2003, 49(12-15):543-555.
doi: 10.1016/S1383-7621(03)00100-0
|
[8] |
Pineiro J A, Bruguera J D. High-speed double-precision computation of reciprocal, division,square root and inverse square root[J]. IEEE Transactions on Computers, 2002, 51(12):1377-1388.
doi: 10.1109/TC.2002.1146704
|
[9] |
潘宏亮. 浮点指数类超越函数的运算算法研究与硬件实现[D]. 西安: 西北工业大学, 2006:3-5.
|
|
Pan Hongliang. Research on algorithms and hardware implementation of floating-point exponential class transcendent functions[D]. Xi'an: Northwestern Polytechnical University, 2006:3-5.
|
[10] |
Montuschi P, BrugueraJ D, Ciminiera L, et al. A digit- by-digit algorithm for mth root extraction[J]. IEEE Transactions on Computers, 2007, 56(12):1696-1706.
doi: 10.1109/TC.2007.70764
|
[11] |
邹霞枫. 128位浮点指数函数的硬件实现[D]. 深圳: 哈尔滨工业大学, 2019:3-6.
|
|
Zou Xiafeng. Hardware implementation of 128-bit floating point exponential function[D]. Shenzhen: Harbin Institute of Technology, 2019:3-6.
|
[12] |
张俊涛, 王红仓. 基于 FPGA的CORDIC 算法通用 IP 核设计[J]. 微计算机信息, 2008, 24(21):238-240.
|
|
Zhang Juntao, Wang Hongcang. Implementation of general CORDIC IP core based on FPGA[J]. Microcomputer Information, 2008, 24(21):238-240.
|
[13] |
赵海燕, 周晓方, 周电. 对数/指数算法的改进及其 VLSI 实现[J]. 计算机工程与应用, 2007, 43(7):104-107.
|
|
Zhao Haiyan, Zhou Xiaofang, Zhou Dian. Arithmetic re-search of logarithm and anti-logarithm converters and VLSI implementation[J]. Computer Engineering and Applications, 2007, 43(7):104-107.
|
[14] |
王少军, 张启荣, 彭宇, 等. 超越函数 FPGA 计算的最佳等距分段线性逼近方法[J]. 仪器仪表学报, 2014, 35(6): 1209-1216.
|
|
Wang Shaojun, Zhang Qirong, Peng Yu, et al. Optimal equidistant piecewise linear approximation algorithm for the computation of transcendental functions in FPGA[J]. Chinese Journal of Scientific Instrument, 2014, 35(6):1209-1216.
|
[15] |
Schulte M J, Swartzlander E E. Hardware designs for exactly rounded elementary functions[J]. IEEE Transactions on Computers, 1994, 43(8):964-973.
doi: 10.1109/12.295858
|
[16] |
林凯文, 陈志坚, 刘东启. 基于泰勒展开的低成本e指数函数电路设计[J]. 计算机应用研究, 2018, 35(6):1761-1763,1782.
|
|
Lin Kaiwen, Chen Zhijian, Liu Dongqi. Design and optimization of exponential function based on Taylor expansion[J]. Application Research of Computers, 2018, 35(6):1761-1763,1782.
|
[17] |
牟胜梅, 李兆刚. 一种面向FPGA的指/对数函数求值算法[J]. 计算机工程与应用, 2011, 47(33):59-61.
|
|
Mou Shengmei, Li Zhaogang. FPGA-oriented evaluation algorithm for exponential and logarithm functions[J]. Computer Engineering and Applications, 2011, 47(33):59-61.
|
[18] |
Ypma T J. Historical development of the Newton-Raphson method[J]. SIAM Review, 1995, 37(4):531-551.
doi: 10.1137/1037125
|