[1] |
袁贤浦, 苗晓丹, 杨俭, 等. 高速列车受电弓气动噪声分析与空腔降噪研究[J]. 电子科技, 2022, 35(1):45-52.
|
|
Yuan Xianpu, Miao Xiaodan, Yang Jian, et al. Aerodynamic noise analysis for high-speed train's pantograph and study on noise reduction of the cavity of pantograph[J]. Electronic Science and Technology, 2022, 35(1):45-52.
|
[2] |
白锐, 徐达, 杨亮, 等. 高集成小型化中频滤波组件设计与实现[J]. 电子科技, 2022, 35(2):1-6.
|
|
Bai Rui, Xu Da, Yang Liang, et al. Design and implementation of high integration and miniaturization if filter module[J]. Electronic Science and Technology, 2022, 35(2):1-6.
|
[3] |
Wang Y T, Li J, Fu Y X, et al. Tunable guided waves in a soft phononic crystal with a line defect[J]. APL Materials, 2021, 9(5):1-7.
|
[4] |
Gkantzounis G, Amoah T, Florescu M. Hyperuniform disordered phononic structures[J]. Physical Review B, 2017, 95(9):1-11.
|
[5] |
冯青松, 杨舟, 梁玉雄, 等. 长度调制的声子晶体梁弯曲振动带隙特性分析[J]. 噪声与振动控制, 2020, 40(4):1-8.
|
|
Feng Qingsong, Yang Zhou, Liang Yuxiong, et al. Analysis of the bending vibration band gap characteristics of a length-adjustable phononic crystal beam[J]. Noise and Vibration Control, 2020, 40(4):1-8.
|
[6] |
Allam A, Sabra K, Erturk A. 3D-printed gradient-index phononic crystal lens for underwater acoustic wave focusing[J]. Physical Review Applied, 2020, 13(6):1-7.
|
[7] |
Hyun J, Park C S, Chang J, et al. Gradient-index phononic crystals for omnidirectional acoustic wave focusing and energy harvesting[J]. Applied Physics Letters, 2020, 116(23):1-5.
|
[8] |
卢一铭, 曹东兴, 申永军, 等. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究[J]. 力学学报, 2021, 53(4):1114-1123.
doi: 10.6052/0459-1879-20-436
|
|
Lu Yiming, Cao Dongxing, Shen Yongjun, et al. Study on the bandgaps of defect states and application of energy harvesting of local resonant phononic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4):1114-1123.
doi: 10.6052/0459-1879-20-436
|
[9] |
Zhang X H, Qu Z G, Xu Y C. Enhanced sound absorption in two-dimensional continuously graded phononic crystals[J]. Japanese Journal of Applied Physics, 2019, 58(9):1-14.
|
[10] |
Cao W W, Qi W K. Plane wave propagation in finite 2-2 composites[J]. Journal of Applied Physics, 1995, 78(7):4627-4632.
doi: 10.1063/1.360701
|
[11] |
Lu W, Xu C G, Zhang S, et al. Low-frequency Gibbs-type oscillation in finite solid-fluid sonic crystals and its application in sub-wavelength wave isolation for waterborne sound[J]. Journal of Physics D: Applied Physics, 2019, 52(50):1-8.
|
[12] |
Li K, Liang B, Yang J, et al. Acoustic broadband metacouplers[J]. Applied Physics Letters, 2017, 110(20):1-5.
|
[13] |
Bai L, Dong H Y, Song G Y, et al. Impedance-matching wavefront-transformation lens based on acoustic metamaterials[J]. Advanced Materials Technologies, 2018, 3(11):1-6.
|
[14] |
Jia X, Li Y, Zhou Y H, et al. Wide bandwidth acoustic transmission via coiled-up metamaterial with impedance matching layers[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(6):1-8.
|
[15] |
Li Y, Shen C, Xie Y B, et al. Tunable asymmetric transmission via lossy acoustic metasurfaces[J]. Physical Review Letters, 2017, 119(3):1-5.
|
[16] |
Dong E Q, Song Z C, Zhang Y, et al. Bioinspired metagel with broadband tunable impedance matching[J]. Science Advances, 2020, 6(44):1-9.
|
[17] |
Xu B Q, Wu J, Lu W, et al. Transmission and rainbow trapping of acoustic waves in a fluid medium using gradient-index superlattices[J]. Journal of Applied Physics, 2021, 129(15):1-10.
|
[18] |
Zhang S, Zhang Y, Gao X W, et al. Superwide-angle acoustic propagations above the critical angles of the Snell law in liquid-solid superlattice[J]. Chinese Physics B, 2014, 23(12):1-7.
|
[19] |
Zhang S, Xu B Q, Cao W W, et al. Controlling the angle range in acoustic low-frequency forbidden transmission in solid-fluid superlattice[J]. Journal of Applied Physics, 2018, 123(11):1-7.
|
[20] |
Zhang S, Zhang Y, Lu W, et al. Low-frequency forbidden bandgap engineering via a cascade of multiple 1D superlattices[J]. Journal of Applied Physics, 2018, 124(15):1-8.
|