[1] |
He L Y, Zhao J Z, Zheng N N, et al. Hardy variation framework for restoration of weather degraded images[J]. Mathematical Problems in Engineering, 2015(7):1-11.
|
[2] |
He K, Sun J, Fellow, et al. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12):2341-2353.
|
[3] |
陆欢. 基于暗原色优化算法的去雾研究[J]. 电子科技, 2020, 33(4):61-64.
|
|
Lu Huan. Research on fog removal based on dark primary color optimization algorithms[J]. Electronic Science and Technology, 2020, 33(4):61-64.
|
[4] |
Zhu Q, Mai J, Shao L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11):3522-3533.
doi: 10.1109/TIP.2015.2446191
pmid: 26099141
|
[5] |
Berman D, Avidan S. Non-local image dehazing[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:47-56.
|
[6] |
Cai B, Xu X, Jia K, et al. DehazeNet:An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11):5187-5198.
doi: 10.1109/TIP.2016.2598681
|
[7] |
孙红, 赵迎志. 基于多尺度梯度的轻量级生成对抗网络[J]. 电子科技, 2023, 36(7):32-38.
|
|
Sun Hong, Zhao Yingzhi. Lightweight generative adversarial networks based on multi-scale gradient[J]. Electronic Science and Techology, 2023, 36(7):32-38.
|
[8] |
Li B, Peng X, Wang Z, et al. Aod-net: All-in-one dehazing network[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017:121-131.
|
[9] |
Engin D, Genç A, Kemal Ekenel H. Cycle-dehaze: Enhanced cyclegan for single image dehazing[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018:37-46.
|
[10] |
Chen D, He M, Fan Q, et al. Gated context aggregation network for image dehazing and deraining[C]. Waikoloa: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2019:98-106.
|
[11] |
Li L, Dong Y, Ren W, et al. Semi-supervised image dehazing[J]. IEEE Transactions on Image Processing, 2020, 29(11):2766-2779.
doi: 10.1109/TIP.83
|
[12] |
Shao Y, Li L, Ren W, et al. Domain adaptation for image dehazing[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:67-74.
|
[13] |
李硕士, 刘洪瑞, 甘永东, 等. 基于残差密集块与注意力机制的图像去雾网络[J]. 湖南大学学报(自然科学版), 2021, 48(6):112-118.
|
|
Li Shuoshi, Liu Hongrui, Gan Yongdong, et al. Image defogging Networks based on residual dense blocks and attention mechanism[J]. Journal of Hunan University (Natural Science), 201, 48(6):112-118.
|
[14] |
Qin X, Wang Z, Bai Y, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]. New York: Proceedings of the AAAI Conference on Artificial Intelligence, 2020:54-64.
|
[15] |
Dong H, Pan J, Xiang L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:91-97.
|
[16] |
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017:77-83.
|
[17] |
Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database[C]. Miami: IEEE Conference on Computer Vision and Pattern Recognition, 2009:24-31.
|
[18] |
Li B, Ren W, Fu D, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1):492-505.
doi: 10.1109/TIP.83
|
[19] |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Montreal: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:108-115.
|