电子科技 ›› 2023, Vol. 36 ›› Issue (9): 35-40.doi: 10.16180/j.cnki.issn1007-7820.2023.09.006

• • 上一篇    下一篇

利用深度可变形轮廓模型进行结构体裂纹视觉检测

赖彬1,2,王森1,2   

  1. 1.昆明理工大学 机电工程学院,云南 昆明 650500
    2.云南省先进装备智能制造技术重点实验室,云南 昆明 650500
  • 收稿日期:2022-04-13 出版日期:2023-09-15 发布日期:2023-09-18
  • 作者简介:赖彬(1993-),男,硕士研究生。研究方向:图像分割。|王森(1983-),男,博士,讲师。研究方向:图像处理及图像分割。
  • 基金资助:
    国家自然科学基金(52065035)

Visual Detection of Structural Cracks Using Depth Deformable Contour ModelLAI

Bin 1,2,WANG Sen1,2   

  1. 1. Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology, Kunming 650500,China
    2. Yunnan Provincial Key Laboratory of Advanced Equipment Intelligent Manufacturing Technology,Kunming 650500,China
  • Received:2022-04-13 Online:2023-09-15 Published:2023-09-18
  • Supported by:
    National Natural Science Foundation of China(52065035)

摘要:

目前针对裂纹检测的深度学习实例分割方法主要通过目标检测生成一个边界框进行逐个像素掩码分割,不仅影响结构体裂纹轮廓的检测效果,且伴随着复杂的后处理代价。针对这一问题,文中提出利用深度可变形轮廓算法模型Deep Snake对结构体裂纹进行识别检测。通过对结构体裂纹数据集进行数据增强以提高模型鲁棒性,同时运用迁移学习将大型图片数据集COCO上的预训练网络参数迁移学习到结构体裂纹分割模型中作为初始化。在自制的裂纹图像数据集上进行实验,结果表明训练后的模型能够正确识别的裂纹对象并同时完成多个裂纹目标的分割,在检测平均时间为0.12 s 的前提下AP50达到75.4%,与其他深度学习模型及边缘检测算法进行的比较结果也体现出Deep Snake算法的优越性。

关键词: 深度学习, 实例分割, 目标检测器, Deep Snake, 结构体裂纹, 数据增强, 迁移学习, 裂纹图像数据集

Abstract:

At present, the deep learning instance segmentation method for crack detection mainly generates a boundary box through target detection to segment pixel by pixel mask, which will affect the detection effect of structural crack contour, and is accompanied by complex post-processing cost. To solve this problem, this study proposes to use deep snake algorithm model of deep deformable contour to identify and detect structural cracks. The robustness of the model is improved by data enhancement of the structural crack data set. At the same time, the pre training network parameters on the large image data set coco are transferred to the structural crack segmentation model as initialization by transfer learning. The experimental results on the self-made crack image data set show that the trained model can correctly identify the crack object and complete the segmentation of multiple crack targets at the same time. On the premise of the average detection time of 0.12 s, the AP50 reaches 75.4%. The comparison between the proposed methool and other deep learning models and edge detection algorithms also reflect the advantages of Deep Snake algorithm.

Key words: deep learning, instance segmentation, object detector, Deep Snake, structural cracks, data augmentation, transfer learning, crack image data set

中图分类号: 

  • TP391.41