[1] |
伍旭东, 王勇, 王瑛. 基于深度主动学习的路面裂纹检测[J]. 信息与电脑, 2021, 33(7):76-80.
|
|
Wu Xudong, Wang Yong, Wang Ying. Pavement crack detection based on deep active learning[J]. Information and Computer, 2021, 33(7):76-80.
|
[2] |
邓鑫, 刘桂华. 一种改进阈值分割的荧光磁粉裂纹提取算法[J]. 测控技术, 2020, 39(9):87-93.
|
|
Deng Xin, Liu Guihua. An improved threshold segmentation algorithm for crack extraction of fluorescent magnetic particles[J]. Measurement and Control Technology, 2020, 39(9):87-93.
|
[3] |
梁放, 宋学, 肖颖, 等. 基于边缘检测的含缺陷岩石裂纹扩展分析[J]. 安徽建筑, 2019, 26(12):127-128.
|
|
Liang Fang, Song Xue, Xiao Ying, et al. Analysis of crack propagation in defective rock based on edge detection[J]. Anhui Architecture, 2019, 26(12):127-128.
|
[4] |
崔洁. 基于随机森林的激光超声表面缺陷识别方法研究[D]. 太原: 中北大学, 2019:33-38.
|
|
Cui Jie. Research on laser ultrasonic surface defect recognition method based on random forest[D]. Taiyuan: North Central University, 2019:33-38.
|
[5] |
夏翔, 宋逸君, 俞传富, 等. 基于BEMD和SVM的路面裂缝识别方法[J]. 电子器件, 2020, 43(1):224-228.
|
|
Xia Xiang, Song Yijun, Yu Chuanfu, et al. Pavement crack identification method based on BEMD and SVM[J]. Electronic Devices, 2020, 43(1):224-228.
|
[6] |
Ye X W, Jin T, Chen P Y. Structural crack detection using deep learning-based fully convolutional networks[J]. Advances in Structural Engineering, 2019, 22(16):3412-3419.
doi: 10.1177/1369433219836292
|
[7] |
Lee D, Kim J, Lee D. Robust concrete crack detection using deep learning-based semantic segmentation[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1):287-299.
doi: 10.1007/s42405-018-0120-5
|
[8] |
张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20.
|
|
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20.
|
[9] |
刘继丹, 孙吉, 仲天舒, 等. 改进SSD卷积神经网络在钢板边裂纹检测中的应用[J]. 冶金自动化, 2020, 44(4): 43-47.
|
|
Liu Jidan, Sun Ji, Zhong Tianshu, et al. Application of improved SSD convolutional neural network in steel plate edge crack detection[J]. Metallurgical Automation, 2020, 44(4):43-47.
|
[10] |
蔡逢煌, 张岳鑫, 黄捷. 基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J]. 模式识别与人工智能, 2020, 33(10):926-933.
doi: 10.16451/j.cnki.issn1003-6059.202010007
|
|
Cai Fenghuang, Zhang Yuexin, Huang Jie. Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10):926-933.
doi: 10.16451/j.cnki.issn1003-6059.202010007
|
[11] |
李太文, 范昕炜. 基于Faster R-CNN的道路裂缝识别[J]. 电子技术应用, 2020, 46(7):53-56.
|
|
Li Taiwen, Fan Xinwei. Road crack recognition based on Faster R-CNN[J]. Application of Electronic Technology, 2020, 46(7):53-56.
|
[12] |
王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5):859-867.
|
|
Wang Sen, Wu Xing, Zhang Yinhui, et al. Full convolutional network image crack detection based on deep learning[J]. Journal of Computer Aided Design and Graphics, 2018, 30(5):859-867.
|
[13] |
陈波, 张华, 汪双, 等. 基于全卷积神经网络的坝面裂纹检测方法研究[J]. 水力发电学报, 2020, 39(7):52-60.
|
|
Chen Bo, Zhang Hua, Wang Shuang, et al. Research on dam surface crack detection method based on fully convolutional neural network[J]. Journal of Hydroelectric Power Generation, 2020, 39(7):52-60.
|
[14] |
李画, 李明晶, 李凯, 等. Mask RCNN 模型在路面缺陷检测中的应用[J]. 科学技术创新, 2020(29):131-132.
|
|
Li Hua, Li Mingjing, Li Kai, et al. Application of Mask RCNN model in pavement defect detection[J]. Science and Technology Innovation, 2020(29):131-132.
|
[15] |
章世祥, 张汉成, 李西芝, 等. 基于机器视觉的路面裂缝病害多目标识别研究[J]. 公路交通科技, 2021, 38(3):30-39.
doi: 10.3969/j.issn.1002-0268.2021.03.005
|
|
Zhang Shixiang, Zhang Hancheng, Li Xizhi, et al. Research on multitarget recognition of pavement cracks and diseases based on machine vision[J]. Highway Traffic Science and Technology, 2021, 38(3):30-39.
doi: 10.3969/j.issn.1002-0268.2021.03.005
|
[16] |
Zhang Q Q, Zhu Z J, Bai Y Q, et al. Distracted driving detection based on the improved CenterNet with attention mechanism[J]. Multimedia Tools and Applications, 2022, 81(6):7993-8005.
doi: 10.1007/s11042-022-12128-3
|
[17] |
李豪, 袁广林, 李从利, 等. 基于2D循环卷积和难度敏感轮廓交并比损失的Deep Snake[J]. 模式识别与人工智能, 2021, 34(11):1004-1016.
doi: 10.16451/j.cnki.issn1003-6059.202111004
|
|
Li Hao, Yuan Guanglin, Li Congli, et al. Deep Snake based on 2D circular convolution and difficulty sensitive contour intersection loss[J]. Pattern Recognitionand Artificial Intelligence, 2021, 34(11):1004-1016.
doi: 10.16451/j.cnki.issn1003-6059.202111004
|
[18] |
Xu H Y, Xu X L, Zuo Y B. Applying morphology to improve Canny operator's image segmentation method[J]. The Journal of Engineering, 2019(23):8816-8819.
|