[1] |
张雪英, 栾忠权, 刘秀丽. 基于深度学习的滚动轴承故障诊断研究综述[J]. 设备管理与维修, 2017, 37(18):130-133.
|
|
Zhang Xueying, Luan Zhongquan, Liu Xiuli. Summary of research on fault diagnosis of rolling bearing based on deep learning[J]. Plant Maintenance Engineering, 2017, 37 (18):130-133.
|
[2] |
Boudiaf A, Moussaoui A, Dahane A, et al. A comparative study of various methods of bearing faults diagnosis using the Case Western Reserve University data[J]. Journal of Failure Analysis and Prevention, 2016, 16(2):271-284.
doi: 10.1007/s11668-016-0080-7
|
[3] |
沙美妤, 刘利国. 基于振动信号的轴承故障诊断技术综述[J]. 轴承, 2015(9):59-63.
|
|
Sha Meiyu, Liu Liguo. Review on fault diagnosis technology for bearings based on vibration signal[J]. Bearing, 2015(9):59-63.
|
[4] |
王兴龙, 郑近德, 潘海洋, 等. 基于MED与自相关谱峭度图的滚动轴承故障诊断方法[J]. 振动与冲击, 2020, 39(18):118-124.
|
|
Wang Xinglong, Zheng Jinde, Pan Haiyang, et al. Fault diagnosis method for rolling bearings based on minimum entropy deconvolution and autograms[J]. Journal of Vibration and Shock, 2020, 39(18):118-124.
|
[5] |
詹瀛鱼, 程良伦, 王涛. 解相关多频率经验模态分解的故障诊断性能优化方法[J]. 振动与冲击, 2020, 39(1):115-122.
|
|
Zhan Yingyu, Cheng Lianglun, Wang Tao. Fault diagnosis performance optimization method based on decorrelation multi-frequency EMD[J]. Journal of Vibration and Shock, 2020, 39(1):115-122.
|
[6] |
Wang W J, McFadden P D. Application of wavelets togearbox vibration signals for fault detection[J]. Journal of Sound and Vibration, 1996, 192(5):927-939.
doi: 10.1006/jsvi.1996.0226
|
[7] |
李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19):124-131.
|
|
Li Heng, Zhang Qing, Qin Xianrong, et al. Fault diagnosismethod for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19):124-131.
|
[8] |
王恒迪, 邓四二, 杨建玺, 等. 基于参数优化变分模态分解的滚动轴承早期故障诊断[J]. 振动与冲击, 2020, 39(23):38-46.
|
|
Wang Hengdi, Deng Sier, Yang Jianxi, et al. Incipient fault diagnosis of rolling bearing based on VMD with parameters optimized[J]. Journal of Vibration and Shock, 2020, 39(23):38-46.
|
[9] |
郑圆, 胡建中, 贾民平, 等. 一种基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击, 2020, 39(21):195-202.
|
|
Zheng Yuan, Hu Jianzhong, Jia Minping, et al. A method for rolling bearing fault feature extraction based on parametric optimization VMD[J]. Journal of Vibration and Shock, 2020, 39(21):195-202.
|
[10] |
王奉涛, 薛宇航, 王雷, 等. 基于流形学习的滚动轴承故障盲源分离方法[J]. 振动、测试与诊断, 2020, 40(1):43-47.
|
|
Wang Fengtao, Xue Yuhang, Wang Lei, et al. Blind source separation method for rolling bearing faults based on manifold learning[J]. Journal of Vibration,Measurement & Diagnosis, 2020, 40(1):43-47.
|
[11] |
刘秀丽, 徐小力, 吴国新, 等. 基于变分模态分解的故障弱信息提取方法[J]. 华中科技大学学报(自然科学版), 2020, 48(7):1-6.
|
|
Liu Xiuli, Xu Xiaoli, Wu Guoxin, et al. Extraction method of weak fault information based on variational mode decomposition[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(7):1-6.
|
[12] |
Bi F, Li X, Liu C, et al. Knock detection based on the optimized variational mode decomposition[J]. Measurement, 2019, 140(7):1-13.
doi: 10.1016/j.measurement.2019.03.042
|
[13] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
doi: 10.1126/science.1127647
pmid: 16873662
|
[14] |
邓佳林, 邹益胜, 张笑璐, 等. 一种改进CNN在轴承故障诊断中的应用[J]. 现代制造工程, 2020, 41(4):142-147.
|
|
Deng Jialin, Zou Yisheng, Zhang Xiaolu, et al. Application of an improved CNN in fault diagnosis of bearings[J]. Modern Manufacturing Engineering, 2020, 41(4):142-147.
|
[15] |
赵小强, 张青青. 改进Alexnet的滚动轴承变工况故障诊断方法[J]. 振动、测试与诊断, 2020, 40(3):472-480.
|
|
Zhao Xiaoqiang, Zhang Qingqing. Improved Alexnet based fault diagnosis method for rolling bearing undervariable conditions[J]. Journal of Vibration,Measurement & Diagnosis, 2020, 40(3):472-480.
|
[16] |
肖雄, 王健翔, 张勇军, 等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国电机工程学报, 2019, 39(15):4558-4568.
|
|
Xiao Xiong, Wang Jianxiang, Zhang Yongjun, et al. A two-dimensional convolutional neural network optimization method for bearing fault diagnosis[J]. Proceedings of the CSEE, 2019, 39(15):4558-4568.
|
[17] |
史光宇, 徐健, 杨强. 基于卷积神经网络的风电机组轴承机械故障智能诊断方法[J]. 华北电力大学学报(自然科学版), 2020, 47(4):71-79.
|
|
Shi Guangyu, Xu Jian, Yang Qiang. Intelligent fault diagnosis on wind turbine bearing based on convolutional neural network[J]. Journal of North China Electric Power University(Natural Science Edition), 2020, 47(4):71-79.
|
[18] |
刘炳集, 熊邦书, 欧巧凤, 等. 基于时频图和CNN的滚动轴承故障诊断[J]. 南昌航空大学学报(自然科学版), 2018, 32(2):86-91.
|
|
Liu Bingji, Xiong Bangshu, Ou Qiaofeng, et al. Fault diagnosis of rolling bearing based on time-frequency representations and CNN[J]. Journal of Nanchang Hangkong University(Natural Sciences), 2018, 32(2):86-91.
|
[19] |
范宇雪, 王江文, 梅桂明, 等. 基于Bi-LSTM的小样本滚动轴承故障诊断方法研究[J]. 噪声与振动控制, 2020, 40(4):103-108.
|
|
Fan Yuxue, Wang Jiangwen, Mei Guiming, et al. Rolling bearing fault diagnosis method based on Bi-LSTM under less samples condition[J]. Noise and Vibration Control, 2020, 40(4):103-108.
|
[20] |
Wang J, Wang D, Wang S, et al. Fault diagnosis of bearings based on multi-sensor information fusion and 2D convolutional neural network[J]. IEEE Access, 2021, 9(7):23717-23725.
doi: 10.1109/Access.6287639
|
[21] |
张龙, 甄灿壮, 熊国良, 等. 基于深度时频特征的机车轴承故障诊断[J]. 交通运输工程学报, 2021, 21(6):247-258.
|
|
Zhang Long, Zhen Canzhuang, Xiong Guoliang, et al. Locomotive bearing fault diagnosis based on deep time-frequency features[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6):247-258.
|
[22] |
Xue F, Zhang W, Xue F, et al. A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network[J]. Measurement, 2021, 176(10):109-226.
|
[23] |
闫书豪, 乔美英. 基于一维WConv-BiLSTM的轴承故障诊断算法[J]. 电子科技, 2021, 34(4):75-82.
|
|
Yan Shuhao, Qiao Meiying. Bearing fault diagnosis algorithm based on one-dimensional WConv-BiLSTM[J]. Electronic Science and Technology, 2021, 34(4):75-82.
|
[24] |
张训杰, 张敏, 李贤均. 基于二维图像和CNN-BiGRU网络的滚动轴承故障模式识别[J]. 振动与冲击, 2021, 40(23):194-201.
|
|
Zhang Xunjie, Zhang Min, Li Xianjun. Rolling bearing fault mode recognition based on 2D image and CNN-BiGRU[J]. Journal of Vibration and Shock, 2021, 40(23):194-201.
|
[25] |
Bechhoefer E. Condition based maintenance fault database for testing of diagnostic and prognostics algorithms[EB/OL].(2020-02-27)[2021-11-15]https://mfpt.org/fault-data-sets/.
|
[26] |
Woo S, Park J, Lee J, et al. CBAM:Convolutional block attention module[C]. Munich: European Conference on Computer Vision, 2008:3-19.
|
[27] |
Zhao M, Zhong S, Fu X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7):4681-4690.
doi: 10.1109/TII.9424
|