电子科技 ›› 2023, Vol. 36 ›› Issue (11): 56-65.doi: 10.16180/j.cnki.issn1007-7820.2023.11.009

• • 上一篇    下一篇

基于跳跃连接-CNN-BiLSTM的轴承故障诊断

于广增,张巧灵,周玉蓉   

  1. 浙江理工大学 信息学院,浙江 杭州 310018
  • 收稿日期:2022-07-01 出版日期:2023-11-15 发布日期:2023-11-20
  • 作者简介:于广增(1998-),男,硕士研究生。研究方向:深度学习、故障检测。|张巧灵(1988-),女,博士,副教授。研究方向:深度学习、故障检测。
  • 基金资助:
    浙江省自然科学基金(LY21F010015);国家自然科学基金(61806178)

Bearing Fault Diagnosis Based on SC-CNN-BiLSTM

YU Guangzeng,ZHANG Qiaoling,ZHOU Yurong   

  1. School of Information, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • Received:2022-07-01 Online:2023-11-15 Published:2023-11-20
  • Supported by:
    Natural Science Foundation of Zhejiang(LY21F010015);National Natural Science Foundation of China(61806178)

摘要:

针对轴承故障数据含有噪声等无关成分及大部分轴承故障诊断方法不能充分利用故障数据的问题,文中提出一种基于跳跃连接-卷积神经网络-双向长短时记忆网络的故障诊断模型。利用短时傅里叶变换将原始振动信号转化为二维时频图像,用卷积神经网络和长短时记忆网络分别提取时频图像的空间和时间特征,并结合全连接层实现分类。添加软阈值注意力和跳跃连接结构,并滤除无关成分可充分利用不同网络层级的输出特征。采用MFPT(Machinery Failure Prevention Technology)轴承数据对所提诊断模型进行验证,实验结果表明该模型能够实现99.79%的故障识别准确率。

关键词: 故障诊断, 深度学习, 卷积神经网络, 双向长短时记忆网络, 跳跃连接, 注意力机制, 短时傅里叶变换, 软阈值

Abstract:

In view of the problem that bearing fault data contains irrelevant components such as noise and most bearing fault diagnosis methods cannot make full use of fault data, a fault diagnosis model based on skip connection- convolutional neural network- bidirectional long short-term memory network is proposed. The original vibration signal is converted into a two-dimensional time-frequency image using short-time Fourier transform, and the spatial and temporal features of the time-frequency image are extracted by convolutional neural network and long-short-term memory network respectively, and the classification is realized by combining the fully connected layer. Adding the structure of soft threshold attention and skip connection can make full use of the output features of different network levels while filtering out irrelevant components. The proposed diagnostic model is verified by MFPT(Machinery Failure Prevention Technology) bearing data, and the experimental results show that the proposed model can achieve a fault identification accuracy of 99.79%.

Key words: fault diagnosis, deep learning, convolutional neural network, bidirectional long short-term memory network, skip connection, attention mechanism, short-time Fourier transform, soft threshold

中图分类号: 

  • TP389.1