电子科技 ›› 2023, Vol. 36 ›› Issue (11): 89-94.doi: 10.16180/j.cnki.issn1007-7820.2023.11.013
• • 上一篇
罗小青
收稿日期:
2022-04-06
出版日期:
2023-11-15
发布日期:
2023-11-20
作者简介:
罗小青(1983-),男,教授。研究方向:计算机控制与嵌入式系统。
基金资助:
LUO Xiaoqing
Received:
2022-04-06
Online:
2023-11-15
Published:
2023-11-20
Supported by:
摘要:
为提高多自由度并联机器人的控制精确度和稳定性,基于动力学与冗余驱动分支等技术的控制优化方法逐渐受到学术界的广泛关注及研究。近年来,随着动力学和驱动分支模型的数学表述逐渐清晰并细化,具有多自由度的并联机器人控制精确度与稳定性也得到了进一步提高。文中通过回顾并联机器人控制技术的研究历程,梳理了现阶段相关技术的研究思路及现状,且在此基础上深入挖掘该技术中存在的问题,提出了并联机器人控制技术的未来研究趋势及发展方向。
中图分类号:
罗小青. 多自由度并联机器人控制技术研究进展[J]. 电子科技, 2023, 36(11): 89-94.
LUO Xiaoqing. Research Progress on Control Technology of Multi-Degree of Freedom Parallel Robot[J]. Electronic Science and Technology, 2023, 36(11): 89-94.
[1] |
Stewart D. A platform with 6 degrees of freedom[J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(1):1-12.
doi: 10.1243/PIME_PROC_1965_180_005_02 |
[2] |
Hunt E. Mechanics of verbal ability[J]. Psychological Review, 1978, 85(2):109-130.
doi: 10.1037/0033-295X.85.2.109 |
[3] | Maccallion H, Pham D T. The analysis of a six dof workstation for mechanized assembly[J]. Theory of Machines and Mechanisms, Montreal, 1979, 7(1):1-14. |
[4] | Mohamed M G. A direct determination of the instantaneous kinematics of fully parallel robot manipulators[J]. Journal of Mechanical Design, 1985, 107(2):226-229. |
[5] | Lee C, Chang P R. Efficient parallel algorithm for robot inverse dynamics computation[J]. IEEE Transactions on Systems Man & Cybernetics, 1986, 16(4):532-542. |
[6] | Hunt K H. Robot kinematics-a compact analytic inverse solution for velocities[J]. Journal of Mechanical Design, 1987, 109(1):42-49. |
[7] | Zhang H, Paul R P. A parallel solution to robot inverse kinematics[C]. Birmingham: IEEE International Conference on Robotics & Automation, 1988:31-40. |
[8] | Chen C, Lee C. A design of pipelined architecture for computing robot direct kinematics[C]. Austin: Symposium on Circuits & Systems, I 1989:56-68. |
[9] | Li Z. Geometrical consideration of robot kinematics[J]. International Journal of Robotics and Automation, 1990, 5(3):139-145. |
[10] | Zhang H, Paul R P. A parallel inverse kinematics solution for robot manipulators based on multiprocessing and linear extrapolation[J]. IEEE Transactions on Robotics & Automation, 1991, 7(5):660-669. |
[11] | Tandirci M, Angeles J, Darcovich J. The role of rotation representations in computational robot kinematics[C]. Boise: IEEE International Conference on Robotics & Automation, 1992:117-126. |
[12] |
Drake B W, Hsia T. Implementation of a unified robot kinematics and inverse dynamics algorithm on a DSP chip[J]. IEEE Transactions on Industrial Electronics, 1993, 40(2):273-281.
doi: 10.1109/41.222650 |
[13] | Kuroe Y, Nakai Y, Mori T. A new neural network learning of inverse kinematics of robot manipulator[C]. Carson City: IEEE World Congress on IEEE International Conference on Neural Networks, 1994:1011-1023. |
[14] |
Clement M G. Simulation and computer-aided kinematic design of three-degree-of-freedom spherical parallel manipulators[J]. Journal of Robotic Systems, 1995, 12(12):857-869.
doi: 10.1002/rob.v12:12 |
[15] |
Amirat Y, Francois C, Fried G, et al. Design and control of a new six DOF parallel robot: Application to equestrian gait simulation[J]. Mechatronics, 1996, 6(2):227-239.
doi: 10.1016/0957-4158(95)00068-2 |
[16] | Sharkey P M, Murray D W, Heuring J J. On the kinematics of robot heads[J]. IEEE Transactions on Robotics & Automation, 1997, 13(3):437-442. |
[17] | Ben-Horin R, Shoham M, Djerassi S. Kinematics,dynamics and construction of a planarly actuated parallel robot[J]. Robotics & Computer Integrated Manufacturing, 1998, 14(2):163-172. |
[18] | Chiaverini S, Siciliano B. The unit quaternion: A useful tool for inverse kinematics of robot manipulators[J]. Systems Analysis Modelling Simulation, 1999, 35(1):45-60. |
[19] |
Bayro-Corrochano E, Kähler D. Motor algebra approach for computing the kinematics of robot manipulators[J]. Journal of Robotic Systems, 2000, 17(9):495-516.
doi: 10.1002/(ISSN)1097-4563 |
[20] | Dong B, Zhang X D. Continuation method applied in kinematics of parallel robot[J]. Applied Mathematics and Mechanics (English Edition), 2001, 12(1):1422-1428. |
[21] | Zhang H, Paul R P. A parallel inverse kinematics solution for robot manipulators based on multiprocessing and linear extrapolation[C]. Chicago: IEEE International Conference on Robotics & Automation, 2002:1789-1796. |
[22] | 赵杰, 朱延河, 蔡鹤皋. Delta型并联机器人运动学正解几何解法[J]. 哈尔滨工业大学学报, 2003(1):25-27. |
Zhao Jie, Zhu Yanhe, Cai Hegao. Geometric solution for direct kinematics of delta parallel robot[J]. Journal of Harbin Institute of Technology, 2003(1):25-27. | |
[23] | Arshad M, Khan T M, Choudhry M A. Solution of forward kinematics model of six degrees of freedom parallel robot manipulator[C]. Houston: Proceedings of the IEEE Symposium on Emerging Technologies, 2005:766-780. |
[24] |
Pessi P, Wu H, Handroos H, et al. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel[J]. Fusion Engineering and Design, 2007, 82(15-24):2047-2054.
doi: 10.1016/j.fusengdes.2007.06.012 |
[25] | Merlet J P. Kinematics of the wire-driven parallel robot MARIONET using linear actuators[C]. Kansas City: IEEE International Conference on Robotics & Automation, 2008:669-676. |
[26] | Pisla D, Plitea N, Vidrean A, et al. Kinematics and design of two variants of a reconfigurable parallel robot[C]. Holunono: Asme/Iftomm International Conference on Reconfigurable Mechanisms & Robots, 2009:466-480. |
[27] |
Yuan Y, Li Y. Design and analysis of a novel 6-DOF redundant actuated parallel robot with compliant hinges for high precision positioning[J]. Nonlinear Dynamics, 2010, 61(4):829-845.
doi: 10.1007/s11071-010-9690-x |
[28] | Bloesch M, Hutter M, Hoepflinger M H, et al. State estimation for legged robots-consistent fusion of leg kinematics and IMU[J]. Robotics Science and Systems, 2012(7):533-541. |
[29] |
Carbonari L, Callegari M, Palmieri G, et al. A new class of reconfigurable parallel kinematic machines science direct[J]. Mechanism and Machine Theory, 2014, 79(2):173-183.
doi: 10.1016/j.mechmachtheory.2014.04.011 |
[30] |
Merlet J P. Solving the forward kinematics of a Gough-Type parallel manipulator with interval analysis[J]. International Journal of Robotics Research, 2016, 23(3):221-235.
doi: 10.1177/0278364904039806 |
[31] |
Jha R, Chablat D, Baron L. Influence of design parameters on the singularities and workspace of a 3-RPS parallel robot[J]. Transactions of the Canadian Society for Mechanical Engineering, 2018, 42(1):30-37.
doi: 10.1139/tcsme-2017-0011 |
[32] | Gao P, Li B, Wen X, et al. Kinematics and workspace analysis of a new 3-DOF parallel robot[C]. Houston: IEEE International Conference on Mechatronics and Automation, 2020:897-907. |
[33] | Szucs L, Galambos P, Drexler D A. Kinematics of Delta-typeparallel robot mechanisms via screw theory:A tutorial paper[C]. Harrisburg: IEEE the Nineteenth World Symposium on Applied Machine Intelligence and Informatics, 2021:507-516. |
[34] | Zhang Z, Xie G, Shao Z, et al. Kinematic calibration of cable-driven parallel robots considering the pulley kinematics[J]. Mechanism and Machine Theory, 2022, 169(1):1-13. |
[35] | Wang Y, Pessi P, Wu H, et al. Accuracy analysis of hybrid parallel robot for the assembling of ITER[J]. Fusion Engineering & Design, 2009, 84(7-11):1964-1968. |
[36] | Hajimirzaalian H, Moosavi H, Massah M. Dynamics analysis and simulation of parallel robot Stewart platform[C]. Cincinati: International Conference on Computer & Automation Engineering, 2010:387-399. |
[37] | Stan S D, Manic M, Szep C, et al. Performance analysis of 3 DOF Delta parallel robot[C]. St. Louis: International Conference on Human System Interactions, 2011:836-849. |
[38] | Yaghoubi Z, Zarabadipour H, Shoorehdeli M A. Energy reduction with anticontrol of chaos for nonholonomic mobile robot system[J]. Abstract & Applied Analysis, 2012(6):1-7. |
[39] |
Zhang G, Wu J, Liu P, et al. Dynamic analysis and model-based feedforward control of a 2-DoF translational parallel manipulator driven by linear motors[J]. Industrial Robot, 2013, 40(6):597-609.
doi: 10.1108/IR-01-2013-307 |
[40] | Kraus W, Schmidt V, Rajendra P, et al. System identification and cable force control for a cable-driven parallel robot with industrial servo drives[C]. Seattle: IEEE International Conference on Robotics & Automation, 2014:521-536. |
[41] |
Borchert G, Battistelli M, Runge G, et al. Analysis of the mass distribution of a functionally extended delta robot[J]. Robotics and Computer Integrated Manufacturing, 2015, 31(2):111-120.
doi: 10.1016/j.rcim.2014.08.003 |
[42] | Negahbani N, Giberti H, Fiore E. Error analysis and adaptive-robust control of a 6-DoF parallel robot with Ball-screw drive actuators[J]. Journal of Robotics, 2016, 1(1):1-15. |
[43] | Wu G, Shi G, Shi Y. Modeling and analysis of a parallel continuum robot using artificial neural network[C]. Topeka: IEEE International Conference on Mechatronics, 2017:59-67. |
[44] | 叶蓓, 郭子昂, 赵振平, 等. 六自由度并联机器人动力学仿真与位置误差分析[J]. 机械制造, 2018, 56(6):38-40. |
Ye Bei, Guo Ziang, Zhao Zhenping, et al. Dynamics simulation and position error analysis of a six-degree-of-freedom parallel robot[J]. Machinery, 2018, 56(6):38-40. | |
[45] | Maloletov A V, Fadeev M Y, Klimchik A S. Error analysis in solving the inverse problem of the Cable-driven parallel underactuated robot kinematics and methods for their elimination[J]. IFAC-Papers on Line, 2019, 52(13):1156-1161. |
[46] |
Sun H, Zhang Y, Xie B, et al. Dynamic modeling and error analysis of a Cable-linkage Serial-parallel palletizing robot[J]. IEEE Access, 2020, 9(1):2188-2200.
doi: 10.1109/Access.6287639 |
[47] | Sanjuan J, Munoz E, Serje D, et al. Methodology for the design of parallel robots using performance atlases: The case of the linear Delta parallel robot[C]. Salt Lake City: The Eighteenth International Multi-Conference on Systems,Signals & Devices, 2021:1903-1919. |
[48] |
Li J, Zhao Y, Tang Q, et al. Conceptual design and error analysis of aCable-driven parallel robot[J]. Robotica, 2022, 40(7):2152-2167.
doi: 10.1017/S0263574721001582 |
[1] | 王柯杰,童东兵. 具有时滞的分数阶忆阻神经网络固定时间同步[J]. 电子科技, 2023, 36(8): 81-87. |
[2] | 刘文景,章国宝,刘宇恒. 基于扩张状态观测器的管桩自动焊接机滑模控制[J]. 电子科技, 2023, 36(6): 1-7. |
[3] | 唐凯,章伟,胡陟,王为科. 基于输出反馈的集群系统双边编队控制[J]. 电子科技, 2023, 36(5): 41-46. |
[4] | 卢红文,袁旭峰,陈瑞洁,李雨龙. 柔性接入微电网的小信号建模[J]. 电子科技, 2023, 36(3): 21-28. |
[5] | 黄成成,金海,鲁文其. 基于Super-Twisting无位置滑膜观测器的永磁同步电机控制[J]. 电子科技, 2023, 36(11): 8-13. |
[6] | 徐邦贤,刘晓波,韩祥民,邱知,唐辉,范津玮. 耦合电感型Zeta变换器的参数优化方法[J]. 电子科技, 2023, 36(1): 88-94. |
[7] | 王平,赵敏. 改进的扰动LPV系统输出反馈预测控制[J]. 电子科技, 2023, 36(1): 81-87. |
[8] | 唐凯,章伟,王为科,胡陟. 分布式异构集群系统PI编队跟踪控制[J]. 电子科技, 2023, 36(1): 21-27. |
[9] | 李哲辉,袁天辰,杨俭,宋瑞刚. 一种新型悬浮磁体结构的双自由度轨道车辆轴箱振动能量采集器[J]. 电子科技, 2022, 35(1): 12-20. |
[10] | 王玉梅,张子寒,王浩. 基于混合势函数的直流微电网群稳定性分析[J]. 电子科技, 2022, 35(1): 66-72. |
[11] | 时慧,童东兵. 基于自适应牵制控制的中立型复杂网络渐近同步[J]. 电子科技, 2021, 34(9): 12-16. |
[12] | 王为科,章伟,宋芳,龙林. 异质非线性多智能体系统时变编队控制[J]. 电子科技, 2021, 34(8): 50-57. |
[13] | 朱景秀,张伟,王亚刚. 一类不稳定时滞对象的两自由度控制器设计[J]. 电子科技, 2021, 34(3): 13-18. |
[14] | 普江华,王学军,吴鹏,陈明方,杨雄. 基于接触的轨道运输车升降系统传动结构稳定性分析[J]. 电子科技, 2021, 34(2): 45-51. |
[15] | 胡琼琼,伞红军,陈久朋,谢飞亚,陈中平,李鹏宇. 一种四自由度并联机器人的运动性能分析及仿真[J]. 电子科技, 2021, 34(11): 46-54. |
|