[1] |
Stewart D. A platform with 6 degrees of freedom[J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(1):1-12.
doi: 10.1243/PIME_PROC_1965_180_005_02
|
[2] |
Hunt E. Mechanics of verbal ability[J]. Psychological Review, 1978, 85(2):109-130.
doi: 10.1037/0033-295X.85.2.109
|
[3] |
Maccallion H, Pham D T. The analysis of a six dof workstation for mechanized assembly[J]. Theory of Machines and Mechanisms, Montreal, 1979, 7(1):1-14.
|
[4] |
Mohamed M G. A direct determination of the instantaneous kinematics of fully parallel robot manipulators[J]. Journal of Mechanical Design, 1985, 107(2):226-229.
|
[5] |
Lee C, Chang P R. Efficient parallel algorithm for robot inverse dynamics computation[J]. IEEE Transactions on Systems Man & Cybernetics, 1986, 16(4):532-542.
|
[6] |
Hunt K H. Robot kinematics-a compact analytic inverse solution for velocities[J]. Journal of Mechanical Design, 1987, 109(1):42-49.
|
[7] |
Zhang H, Paul R P. A parallel solution to robot inverse kinematics[C]. Birmingham: IEEE International Conference on Robotics & Automation, 1988:31-40.
|
[8] |
Chen C, Lee C. A design of pipelined architecture for computing robot direct kinematics[C]. Austin: Symposium on Circuits & Systems, I 1989:56-68.
|
[9] |
Li Z. Geometrical consideration of robot kinematics[J]. International Journal of Robotics and Automation, 1990, 5(3):139-145.
|
[10] |
Zhang H, Paul R P. A parallel inverse kinematics solution for robot manipulators based on multiprocessing and linear extrapolation[J]. IEEE Transactions on Robotics & Automation, 1991, 7(5):660-669.
|
[11] |
Tandirci M, Angeles J, Darcovich J. The role of rotation representations in computational robot kinematics[C]. Boise: IEEE International Conference on Robotics & Automation, 1992:117-126.
|
[12] |
Drake B W, Hsia T. Implementation of a unified robot kinematics and inverse dynamics algorithm on a DSP chip[J]. IEEE Transactions on Industrial Electronics, 1993, 40(2):273-281.
doi: 10.1109/41.222650
|
[13] |
Kuroe Y, Nakai Y, Mori T. A new neural network learning of inverse kinematics of robot manipulator[C]. Carson City: IEEE World Congress on IEEE International Conference on Neural Networks, 1994:1011-1023.
|
[14] |
Clement M G. Simulation and computer-aided kinematic design of three-degree-of-freedom spherical parallel manipulators[J]. Journal of Robotic Systems, 1995, 12(12):857-869.
doi: 10.1002/rob.v12:12
|
[15] |
Amirat Y, Francois C, Fried G, et al. Design and control of a new six DOF parallel robot: Application to equestrian gait simulation[J]. Mechatronics, 1996, 6(2):227-239.
doi: 10.1016/0957-4158(95)00068-2
|
[16] |
Sharkey P M, Murray D W, Heuring J J. On the kinematics of robot heads[J]. IEEE Transactions on Robotics & Automation, 1997, 13(3):437-442.
|
[17] |
Ben-Horin R, Shoham M, Djerassi S. Kinematics,dynamics and construction of a planarly actuated parallel robot[J]. Robotics & Computer Integrated Manufacturing, 1998, 14(2):163-172.
|
[18] |
Chiaverini S, Siciliano B. The unit quaternion: A useful tool for inverse kinematics of robot manipulators[J]. Systems Analysis Modelling Simulation, 1999, 35(1):45-60.
|
[19] |
Bayro-Corrochano E, Kähler D. Motor algebra approach for computing the kinematics of robot manipulators[J]. Journal of Robotic Systems, 2000, 17(9):495-516.
doi: 10.1002/(ISSN)1097-4563
|
[20] |
Dong B, Zhang X D. Continuation method applied in kinematics of parallel robot[J]. Applied Mathematics and Mechanics (English Edition), 2001, 12(1):1422-1428.
|
[21] |
Zhang H, Paul R P. A parallel inverse kinematics solution for robot manipulators based on multiprocessing and linear extrapolation[C]. Chicago: IEEE International Conference on Robotics & Automation, 2002:1789-1796.
|
[22] |
赵杰, 朱延河, 蔡鹤皋. Delta型并联机器人运动学正解几何解法[J]. 哈尔滨工业大学学报, 2003(1):25-27.
|
|
Zhao Jie, Zhu Yanhe, Cai Hegao. Geometric solution for direct kinematics of delta parallel robot[J]. Journal of Harbin Institute of Technology, 2003(1):25-27.
|
[23] |
Arshad M, Khan T M, Choudhry M A. Solution of forward kinematics model of six degrees of freedom parallel robot manipulator[C]. Houston: Proceedings of the IEEE Symposium on Emerging Technologies, 2005:766-780.
|
[24] |
Pessi P, Wu H, Handroos H, et al. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel[J]. Fusion Engineering and Design, 2007, 82(15-24):2047-2054.
doi: 10.1016/j.fusengdes.2007.06.012
|
[25] |
Merlet J P. Kinematics of the wire-driven parallel robot MARIONET using linear actuators[C]. Kansas City: IEEE International Conference on Robotics & Automation, 2008:669-676.
|
[26] |
Pisla D, Plitea N, Vidrean A, et al. Kinematics and design of two variants of a reconfigurable parallel robot[C]. Holunono: Asme/Iftomm International Conference on Reconfigurable Mechanisms & Robots, 2009:466-480.
|
[27] |
Yuan Y, Li Y. Design and analysis of a novel 6-DOF redundant actuated parallel robot with compliant hinges for high precision positioning[J]. Nonlinear Dynamics, 2010, 61(4):829-845.
doi: 10.1007/s11071-010-9690-x
|
[28] |
Bloesch M, Hutter M, Hoepflinger M H, et al. State estimation for legged robots-consistent fusion of leg kinematics and IMU[J]. Robotics Science and Systems, 2012(7):533-541.
|
[29] |
Carbonari L, Callegari M, Palmieri G, et al. A new class of reconfigurable parallel kinematic machines science direct[J]. Mechanism and Machine Theory, 2014, 79(2):173-183.
doi: 10.1016/j.mechmachtheory.2014.04.011
|
[30] |
Merlet J P. Solving the forward kinematics of a Gough-Type parallel manipulator with interval analysis[J]. International Journal of Robotics Research, 2016, 23(3):221-235.
doi: 10.1177/0278364904039806
|
[31] |
Jha R, Chablat D, Baron L. Influence of design parameters on the singularities and workspace of a 3-RPS parallel robot[J]. Transactions of the Canadian Society for Mechanical Engineering, 2018, 42(1):30-37.
doi: 10.1139/tcsme-2017-0011
|
[32] |
Gao P, Li B, Wen X, et al. Kinematics and workspace analysis of a new 3-DOF parallel robot[C]. Houston: IEEE International Conference on Mechatronics and Automation, 2020:897-907.
|
[33] |
Szucs L, Galambos P, Drexler D A. Kinematics of Delta-typeparallel robot mechanisms via screw theory:A tutorial paper[C]. Harrisburg: IEEE the Nineteenth World Symposium on Applied Machine Intelligence and Informatics, 2021:507-516.
|
[34] |
Zhang Z, Xie G, Shao Z, et al. Kinematic calibration of cable-driven parallel robots considering the pulley kinematics[J]. Mechanism and Machine Theory, 2022, 169(1):1-13.
|
[35] |
Wang Y, Pessi P, Wu H, et al. Accuracy analysis of hybrid parallel robot for the assembling of ITER[J]. Fusion Engineering & Design, 2009, 84(7-11):1964-1968.
|
[36] |
Hajimirzaalian H, Moosavi H, Massah M. Dynamics analysis and simulation of parallel robot Stewart platform[C]. Cincinati: International Conference on Computer & Automation Engineering, 2010:387-399.
|
[37] |
Stan S D, Manic M, Szep C, et al. Performance analysis of 3 DOF Delta parallel robot[C]. St. Louis: International Conference on Human System Interactions, 2011:836-849.
|
[38] |
Yaghoubi Z, Zarabadipour H, Shoorehdeli M A. Energy reduction with anticontrol of chaos for nonholonomic mobile robot system[J]. Abstract & Applied Analysis, 2012(6):1-7.
|
[39] |
Zhang G, Wu J, Liu P, et al. Dynamic analysis and model-based feedforward control of a 2-DoF translational parallel manipulator driven by linear motors[J]. Industrial Robot, 2013, 40(6):597-609.
doi: 10.1108/IR-01-2013-307
|
[40] |
Kraus W, Schmidt V, Rajendra P, et al. System identification and cable force control for a cable-driven parallel robot with industrial servo drives[C]. Seattle: IEEE International Conference on Robotics & Automation, 2014:521-536.
|
[41] |
Borchert G, Battistelli M, Runge G, et al. Analysis of the mass distribution of a functionally extended delta robot[J]. Robotics and Computer Integrated Manufacturing, 2015, 31(2):111-120.
doi: 10.1016/j.rcim.2014.08.003
|
[42] |
Negahbani N, Giberti H, Fiore E. Error analysis and adaptive-robust control of a 6-DoF parallel robot with Ball-screw drive actuators[J]. Journal of Robotics, 2016, 1(1):1-15.
|
[43] |
Wu G, Shi G, Shi Y. Modeling and analysis of a parallel continuum robot using artificial neural network[C]. Topeka: IEEE International Conference on Mechatronics, 2017:59-67.
|
[44] |
叶蓓, 郭子昂, 赵振平, 等. 六自由度并联机器人动力学仿真与位置误差分析[J]. 机械制造, 2018, 56(6):38-40.
|
|
Ye Bei, Guo Ziang, Zhao Zhenping, et al. Dynamics simulation and position error analysis of a six-degree-of-freedom parallel robot[J]. Machinery, 2018, 56(6):38-40.
|
[45] |
Maloletov A V, Fadeev M Y, Klimchik A S. Error analysis in solving the inverse problem of the Cable-driven parallel underactuated robot kinematics and methods for their elimination[J]. IFAC-Papers on Line, 2019, 52(13):1156-1161.
|
[46] |
Sun H, Zhang Y, Xie B, et al. Dynamic modeling and error analysis of a Cable-linkage Serial-parallel palletizing robot[J]. IEEE Access, 2020, 9(1):2188-2200.
doi: 10.1109/Access.6287639
|
[47] |
Sanjuan J, Munoz E, Serje D, et al. Methodology for the design of parallel robots using performance atlases: The case of the linear Delta parallel robot[C]. Salt Lake City: The Eighteenth International Multi-Conference on Systems,Signals & Devices, 2021:1903-1919.
|
[48] |
Li J, Zhao Y, Tang Q, et al. Conceptual design and error analysis of aCable-driven parallel robot[J]. Robotica, 2022, 40(7):2152-2167.
doi: 10.1017/S0263574721001582
|