[1] |
孔鸣, 何前锋, 李兰娟. 人工智能辅助诊疗发展现状与战略研究[J]. 中国工程科学, 2018, 20(2):86-91.
doi: 10.15302/J-SSCAE-2018.02.013
|
|
Kong Ming, He Qianfeng, Li Lanjuan. AI assisted clinical diagnosis & treatment and development strategy[J]. Strategic Study of CAE, 2018, 20(2):86-91.
doi: 10.15302/J-SSCAE-2018.02.013
|
[2] |
尹梓名, 孙大运, 胡晓晖, 等. 人工智能在骨质疏松症中的应用研究综述[J]. 小型微型计算机系统, 2019, 40(9):1839-1850.
|
|
Yin Ziming, Sun Dayun, Hu Xiaohui, et al. Review on the application of artificial intelligence for osteoporosis[J]. Journal of Chinese Computer Systems, 2019, 40(9):1839-1850.
|
[3] |
Löffler M T, Sekuboyina A, Jacob A, et al. A vertebral segmentation dataset with fracture grading[J]. Radiology:Artificial Intelligence, 2020, 2(4):138-146.
|
[4] |
Hesamian M H, Jia W, He X, et al. Deep learning techniques for medical image segmentation: Achievements and challenges[J]. Journal of Digital Imaging, 2019, 32(4):582-596.
doi: 10.1007/s10278-019-00227-x
pmid: 31144149
|
[5] |
马金林, 邓媛媛, 马自萍. 肝脏肿瘤CT图像深度学习分割方法综述[J]. 中国图象图形学报, 2020, 25(10):2024-2046.
|
|
Ma Jinlin, Deng Yuanyuan, Ma Ziping. Review of deep learning segmentation methods for CT images of liver tumors[J]. Journal of Image and Graphics, 2020, 25(10):2024-2046.
|
[6] |
闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11.
|
|
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11.
|
[7] |
Sekuboyina A, Husseini M E, Bayat A, et al. VerSe:A vertebrae labelling and segmentation benchmark for multi-detector CT images[J]. Medical Image Analysis, 2021, 73(10):2166-2171.
|
[8] |
Korez R, Ibragimov B, Likar B, et al. A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation[J]. IEEE Transactions on Medical Imaging, 2015, 34(8):1649-1662.
doi: 10.1109/TMI.2015.2389334
pmid: 25585415
|
[9] |
Yao J, Burns J E, Munoz H, et al. Detection of vertebral body fractures based on cortical shell unwrapping[C]. Heidelberg: International Conference on Medical ImageComputing and Computer-Assisted Intervention, 2012:509-516.
|
[10] |
Glocker B, Feulner J, Criminisi A, et al. Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[C]. Heidelberg: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2012:590-598.
|
[11] |
Jakubicek R, Chmelik J, Jan J, et al. Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines[J]. Computer Methods and Programs in Biomedicine, 2020, 183(C):105081-105087.
|
[12] |
Chen J, Wang Y, Guo R, et al. Lsrc:A long-short range context-fusing framework for automatic 3D vertebra localization[C]. Cham: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019:95-103.
|
[13] |
Payer C, Stern D, Bischof H, et al. Coarse to fine vertebrae localization and segmentation with spatial Configuration-Net and U-Net[C]. Valletta: Proceedings of the Fifteenth International Joint Conference on Computer Vision,Imaging and Computer Graphics Theory and Applications, 2020:124-133.
|
[14] |
Qin C, Yao D, Zhuang H, et al. Residual block-based multi-label classification and localization network with integral regression for vertebrae labeling[EB/OL].(2020-01-01)[2022-06-23]https://arxiv.org/abs/2001.0017.
|
[15] |
Wang F, Zheng K, Lu L, et al. Automatic vertebra localization and identification in CT by spine rectification and anatomically-constrained optimization[C]. Nashville: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:5280-5288.
|
[16] |
Liao H, Mesfin A, Luo J. Joint vertebrae identification and localization in spinal CT images by combining short-and long-range contextual information[J]. IEEE Transactions on Medical Imaging, 2018, 37(5):1266-1275.
doi: 10.1109/TMI.2018.2798293
|
[17] |
McCouat J, Glocker B. Vertebrae detection and localization in CT with two-stage CNNS and dense annotateions[EB/OL].(201910-14)[2022-06-23]https://arxiv.org/abs/1910.05911.
|
[18] |
Levine M, De Silva T, Ketcha M D, et al. Automatic vertebrae localization in spine CT:A deep-learning approach for image guidance and surgical data science[C]. San Diego: Image-Guided Procedures,Robotic Interventions and Modeling.International Society for Optics and Photonics, 2019:3651-3670.
|
[19] |
Sekuboyina A, Rempfler M, Kukaĉka J, et al. Btrfly net:Vertebrae labelling with energy-based adversarial learning of local spine prior[C]. Cham: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018:649-657.
|
[20] |
Yang D, Xiong T, Xu D. Automatic vertebra labeling in large-scale medical images using deep image-to-image network with message passing and sparsity regularization[C]. Cham: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics, 2019:179-197.
|
[21] |
Shi D, Pan Y, Liu C, et al. Automatic localization and segmentation of vertebral bodies in 3D CT volumes with deep learning[C]. New York: Proceedings of the Second International Symposium on Image Computingand Digital Medicine, 2018:42-46.
|
[22] |
Rak M, Steffen J, Meyer A, et al. Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in MRI[J]. Compute Methods and Programs in Biomedicine, 2019, 177(8):47-56.
|
[23] |
Cheng P, Yang Y, Yu H, et al. Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net[J]. Scientific Reports, 2021, 11(1):1-13.
doi: 10.1038/s41598-020-79139-8
|
[24] |
Bae H J, Hyun H, Byeon Y, et al. Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural networks[J]. Computer Methods and Programs in Biomedicine, 2020, 184(3):105119-105131.
doi: 10.1016/j.cmpb.2019.105119
|
[25] |
Lessmann N, Van G B, De P A, et al. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification[J]. Medical Image Analysis, 2019, 53(4):142-155.
doi: 10.1016/j.media.2019.02.005
|
[26] |
Chuang C H, Lin C Y, Tsai Y Y, et al. Efficient triple output network for vertebral segmentation and identification[J]. IEEE Access, 2019, 7(2):117978-117985.
doi: 10.1109/Access.6287639
|
[27] |
Janssens R, Zeng G, Zheng G. Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks[C]. Washington D.C.: IEEE the Fifteenth International Symposium on Biomedical Imaging, 2018:893-897.
|
[28] |
Xia L, Xiao L, Quan G, et al. 3D cascaded convolutional networks for multi-vertebrae segmentation[J]. Current Medical Imaging, 2020, 16(3):231-240.
doi: 10.2174/1573405615666181204151943
pmid: 32133953
|
[29] |
Zareie M, Parsaei H, Amiri S, et al. Automatic segmentation of vertebrae in 3D CT images using adaptive fast 3D pulse coupled neural networks[J]. Australasian Physical & Engineering Sciences in Medicine, 2018, 41(4):1009-1020.
|