电子科技 ›› 2023, Vol. 36 ›› Issue (11): 28-34.doi: 10.16180/j.cnki.issn1007-7820.2023.11.005

• • 上一篇    下一篇

深度学习在脊柱质心定位与分割的应用进展

孙红1,莫光萍1,徐广辉2,杨晨1   

  1. 1.上海理工大学 光电信息与计算机工程学院,上海 200093
    2.上海市第四人民医院 脊柱外科,上海 200434
  • 收稿日期:2022-06-24 出版日期:2023-11-15 发布日期:2023-11-20
  • 作者简介:孙红(1964-),女,博士,副教授。研究方向:模式识别与智能系统、计算机视觉与图像处理。|莫光萍(1997-),女,硕士研究生。研究方向:医学图像处理与分析。|徐广辉(1977-),男,博士,主任医师。研究方向:脊柱外科基础与临床、脊柱影像医学。
  • 基金资助:
    国家自然科学基金(61703277);上海市自然科学基金(21ZR1450200)

Advances in Application of Deep Learning in Centroid Localization and Vertebrae Segmentation of Spine

SUN Hong1,MO Guangping1,XU Guanghui2,YANG Chen1   

  1. 1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2. Department of Spine Surgery, Shanghai Fourth People's Hospital, Shanghai 200434, China
  • Received:2022-06-24 Online:2023-11-15 Published:2023-11-20
  • Supported by:
    National Natural Science Foundation of China(61703277);Shanghai Natural Science Foundation(21ZR1450200)

摘要:

脊柱医学图像质心定位与椎骨分割在脊柱手术引导中具有重要意义,准确定位脊柱质心与分割椎骨已成为重要的研究课题。近年来,随着GPU算力的提高以及医学图像数据的累积,深度学习在脊柱图像中的应用取得突破。为研究深度学习在脊柱医学图像定位与分割任务中的应用现状与发展,文中对该领域近几年脊柱定位与分割模型进行整理与研究。收集脊柱常用数据集与评价指标并探讨深度学习模型在脊柱质心定位与分割的应用,分析模型实现过程及存在的不足之处。文中还针对目前深度学习在脊柱质心定位与分割应用面临的问题给出应对策略,并提出未来可行的发展方向。

关键词: 脊柱图像, 脊柱质心定位, UNet, 椎骨分割, 深度学习, 上下文信息, CT图像, MR图像

Abstract:

Spinal centroid localization and vertebral segmentation have great significance in the guidance of spinal surgery. Accurately locate the spinal centroid and segment vertebrae has become an important research topic.In recent years, with the improvement of GPU computing power and the accumulation of medical image data, the application of deep learning in spinal imaging has made a major breakthrough. In order to study the application status and development of deep learning in the task of spinal medical image localization and segmentation, this study storts out and studies the models of spinal localization and segmentation in this field in recent years. This study collects the commonly used data sets and evaluation indexes of the spine, discusses the application of a deep learning model in spinal centroid location and segmentation, and analyzes the realization process and shortcomings of the model. This study also outlines the countermeasures for the problems faced by the current application of deep learning in spinal centroid location and segmentation and outlines the feasible development direction in the future.

Key words: spinal images, spinal centroid localization, UNet, vertebra segmentation, deep learning, contextual information, CT image, MR image

中图分类号: 

  • TP391