电子科技 ›› 2023, Vol. 36 ›› Issue (11): 1-7.doi: 10.16180/j.cnki.issn1007-7820.2023.11.001

• •    下一篇

一种具有结构先验的贝叶斯网络结构学习算法

仝兆景,李金香,乔征瑞   

  1. 河南理工大学 电气工程与自动化学院,河南 焦作 454003
  • 收稿日期:2022-06-13 出版日期:2023-11-15 发布日期:2023-11-20
  • 作者简介:仝兆景(1979-),男,博士,副教授。研究方向:装备故障诊断、智能检测。|李金香(1996-),女,硕士研究生。研究方向:贝叶斯网络、轴承故障诊断。
  • 基金资助:
    国家自然科学基金(U1504623);河南理工大学研究生教育教学改革项目(2021YJ10)

A Bayesian Network Structure Learning Algorithm with Structure Priors

TONG Zhaojing,LI Jinxiang,QIAO Zhengrui   

  1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, China
  • Received:2022-06-13 Online:2023-11-15 Published:2023-11-20
  • Supported by:
    National Natural Science Foundation of China(U1504623);Graduate Education and Teaching Reform Project of Henan Polytechnic University(2021YJ10)

摘要:

贝叶斯网络(Bayesian Network,BN)的计算复杂度随着节点数量的增加而增加,其最优结构仍是一个NP(Non-deterministic Polynomial Time)-hard问题。为优化贝叶斯网络结构,提高复杂BN结构的计算能力,通过约束和分数的混合学习方式进行BN结构优化。基于约束的学习采用PC(Peter-Clark)算法生成初始网络结构,以提高网络的初始评分。基于分数的学习采用麻雀搜索算法寻找BN的最优结构,以增强其在BN中的评分搜索能力。将麻雀搜索算法同PC算法应用于BN优化其结构,并采用标准BN进行实验,证明了所提算法在BN结构学习中的可行性与有效性。不同复杂度的网络实验表明,相比其他算法,文中所提方法获得了更好的贝叶斯信息准则评分,且在ASIA网络上的2 000个样本的测试中,与标准分数误差仅为0.2。

关键词: 贝叶斯网络, 结构学习, BIC评分, 先验结构, 麻雀搜索算法, PC算法, 约束学习, 分数学习

Abstract:

The computational complexity of Bayesian Networks(BN) increases with the increase of the number of nodes, and the optimal structure of BN is still a NP(Non-deterministic Polynomial Time)-hard problem. To optimize the BN structure and improve the computing power of the complex BN structure, the BN structure is optimized through the hybrid learning method of constraints and scores. In the constrained learning, PC (Peter-Clark) algorithm is used to generate the initial network structure to improve the initial score of the network. Score-based learning uses the sparrow search algorithm to find the optimal structure of BN to enhance its scoring search ability in BN. The sparrow search algorithm and PC algorithm are applied to BN to optimize its structure, and the standard BN is used to conduct experiments, which proves the feasibility and effectiveness of the proposed algorithm in BN structure learning. Experiments on networks with different complexities show that the proposed method obtains better BIC scores than other algorithms, and in the test of 2 000 samples on the ASIA network, the error from the standard score is only 0.2.

Key words: Bayesian network, structure learning, BIC score, prior structure, sparrow search algorithm, PC algorithm, constraint-based learning, score-based learning

中图分类号: 

  • TP18