电子科技 ›› 2023, Vol. 36 ›› Issue (7): 75-80.doi: 10.16180/j.cnki.issn1007-7820.2023.07.011

• • 上一篇    下一篇

基于自适应 t分布与随机游走的麻雀搜索算法

聂方鑫,王宇嘉   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2022-03-17 出版日期:2023-07-15 发布日期:2023-06-21
  • 作者简介:聂方鑫(1996-),男,硕士研究生。研究方向:进化计算。|王宇嘉(1979-),女,博士,副教授。研究方向:群智能算法、进化计算。
  • 基金资助:
    国家自然科学基金(61703270)

Sparrow Search Algorithm Based on Adaptive t-Distribution and Random Walk

NIE Fangxin,WANG Yujia   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science, Shanghai 201620,China
  • Received:2022-03-17 Online:2023-07-15 Published:2023-06-21
  • Supported by:
    National Natural Science Foundation of China(61703270)

摘要:

针对麻雀搜索算法在解决复杂问题时存在的收敛精度降低以及陷入局部最优等问题,文中提出了一种基于自适应t分布与随机游走的麻雀搜索算法。该算法在初始化过程中使用反向学习来生成反向解,从中选择优秀的个体组成初始化种群。在原始麻雀搜索算法上采用自适应t分布策略和高斯随机游走策略可以提高麻雀个体的寻优能力,同时防止算法早熟。仿真结果表明,相较于对比算法,文中所提算法的收敛精度和收敛速度都有所提升。

关键词: 麻雀搜索算法, 自适应t分布, 反向学习策略, 随机游走策略, 函数优化, 局部最优, 全局最优, 优化算法

Abstract:

In view of the problems of low convergence accuracy and falling into local optimum when solving complex problems, a sparrow search algorithm based on adaptive t-distribution and random walk is proposed in this study. In the initialization process, the algorithm uses reverse learning to generate reverse solutions from which excellent individuals are selected to form the initial population. In the original sparrow search algorithm, the adaptive t-distribution strategy and Gaussian random walk strategy are used to improve the optimization ability of the sparrow individuals, and can prevent the algorithm from premature. The simulation results show that the proposed algorithm improves the convergence accuracy and convergence speed when compared with the comparison algorithm.

Key words: sparrow search algorithm, adaptive t-distribution, opposition-based learning strategy, random walk strategy, function optimization, local optimum, global optimum, optimistic algorithm

中图分类号: 

  • TP301.6