[1] |
Persello C, Tolpekin V A, Bergado J R, et al. Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial grouping[J]. Remote Sensing of Environment, 2019, 23(1):1-18.
doi: 10.1016/0034-4257(87)90067-8
|
[2] |
Meier J, Mauser W, Hank T, et al. Assessments on the impact of high-resolution-sensor pixel sizes for common agricultural policy and smart farming services in European regions[J]. Computers and Electronics in Agriculture, 2020, 16(9):1-11.
doi: 10.1016/S0168-1699(96)00018-X
|
[3] |
Zhang D, Pan Y, Zhang J, et al. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution[J]. Remote Sensing of Environment, 2020, 24(7):1-23.
doi: 10.1016/0034-4257(88)90003-X
|
[4] |
Turker M, Kok E H. Field-based sub-boundary extraction fromremote sensing imagery using perceptual grouping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79(3):106-21.
doi: 10.1016/j.isprsjprs.2013.02.009
|
[5] |
Rahman M S, Di L, Yu Z, et al. Crop field boundary delineation using historical crop rotation pattern[C]. Istanbul: Proceedings of the Eighth International Conference on Agro-Geoinformatics,IEEE, 2019:1-5.
|
[6] |
Xue Y, Zhao J, Zhang M. A watershed-segmentation-based improved algorithm for extracting cultivated land boundaries[J]. Remote Sensing, 2021, 13(5):939-943.
doi: 10.3390/rs13050939
|
[7] |
Ghaffarian S, Turker M. An improved cluster-based snake model for automatic agricultural field boundary extraction from high spatial resolution imagery[J]. International Journal of Remote Sensing, 2018, 40(4):1217-1247.
doi: 10.1080/01431161.2018.1524178
|
[8] |
García-Pedrero A, Gonzalo-Martín C, Lillo-Saavedra M. A machine learning approach for agricultural parcel delineation through agglomerative segmentation[J]. International Journal of Remote Sensing, 2017, 38(7): 1809-1819.
doi: 10.1080/01431161.2016.1278312
|
[9] |
Zhang P, Hu S, Li W, et al. Parcel-level mapping of crops in a smallholder agricultural area: A case of central China using single-temporal VHSR imagery[J]. Computers and Electronics in Agriculture, 2020, 17(5):1-11.
doi: 10.1016/S0168-1699(96)01229-X
|
[10] |
Yoon H, Kim S. Detecting abandoned farmland using harmonic analysis and machine learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 16(6):201-212.
|
[11] |
闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11.
|
|
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11.
|
[12] |
Du Z, Yang J, Ou C, et al. Smallholder crop area mapped with a semantic segmentation deep learning method[J]. Remote Sensing, 2019, 11(7):1-21.
doi: 10.3390/rs11010001
|
[13] |
周楠, 杨鹏, 魏春山, 等. 地块尺度的山区耕地精准提取方法[J]. 农业工程学报, 2021, 37(19):260-266.
|
|
Zhou Nan, Yang Peng, Wei Chunshan, et al. Accurate extraction method for cropland in mountainous areas based on field parcel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19):260-266.
|
[14] |
Xia L, Luo J, Sun Y, et al. Deep extraction of cropland parcels from very high-resolution remotely sensed imagery[C].Hangzhou: Proceedings of the Seventh International Conference on Agro-geoinformatics,IEEE, 2018:1-5.
|
[15] |
Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:5693-5703.
|
[16] |
Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C].Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7794-7803.
|
[17] |
Zhu Q, Liao C, Hu H, et al. MAP-Net: Multiple attending path neural network for building footprint extraction from remote sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(7):6169-6181.
doi: 10.1109/TGRS.2020.3026051
|
[18] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
|
[19] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]. Freiburg: International Conference on Medical Image Computing and Computer-assisted Intervention,Springer Cham, 2015:234-241.
|
[20] |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C].Munich: Proceedings of the European Conference on Computer Vision, 2018:801-818.
|