电子科技 ›› 2023, Vol. 36 ›› Issue (7): 70-74.doi: 10.16180/j.cnki.issn1007-7820.2023.07.010

• • 上一篇    下一篇

基于多尺度语义信息增强的农田地块提取网络

曾薪鑫,张洪艳   

  1. 武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430079
  • 收稿日期:2022-03-16 出版日期:2023-07-15 发布日期:2023-06-21
  • 作者简介:曾薪鑫(1997-),女,硕士研究生。研究方向:农业遥感。|张洪艳(1983-),男,博士,教授。研究方向:遥感信息处理与应用。
  • 基金资助:
    湖北省自然科学基金(2020CFA053);武汉市应用基础前沿项目(2020010601012184)

A Farmland Parcel Extraction Network Based on Multi-Scale Semantic Information Enhancement

ZENG Xinxin,ZHANG Hongyan   

  1. State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing, Wuhan University,Wuhan 430079,China
  • Received:2022-03-16 Online:2023-07-15 Published:2023-06-21
  • Supported by:
    Natural Science Foundation of Hubei Province(2020CFA053);Wuhan Application Foundation Frontier Project(2020010601012184)

摘要:

针对因农田类间异质性高、相邻地块之间间隔小而出现的相邻地块黏连、地块提取不完整等问题,文中提出了一种基于多尺度语义信息增强的农田地块提取网络。采用并行的多尺度特征提取模块,通过保持特征图的高分辨率保留高精度的边缘信息,降低由下采样带来的细节损耗,缓解地块之间的黏连。使用基于注意力机制的全局语义信息增强模块,通过获取全局语义信息增强网络的类别判断能力减少地块提取不完整的现象。实验结果表明,在IoU、OA、F1-score评价指标上,文中方法比现有研究中具有代表性的4种算法提高了1%~13%。

关键词: 高分辨率遥感影像, 农田地块, 深度学习, 语义分割, 多尺度特征, 语义信息增强, 地块黏连, 地块不完整

Abstract:

Facing the problems of adhesion of adjacent parcels and incomplete parcels due to the high heterogeneity and the small region among neighbor parcels, a farmland parcel extraction network based on multi-scale semantic information enhancement is proposed in this study. To alleviate the adhesion between parcels, the multi-scale feature extraction module with parallel structure is used, which retained the high-resolution feature maps to maintain high-precision edge information and reduce the loss of spatial location information due to downsampling. Furthermore, to reduce the phenomenon of incomplete parcels, the global semantic information enhancement module based on attentional mechanism is utilized to enhance the classification ability of the network by capture global semantic information instead of local semantic information. According to the experimental results, it is shown that the proposed method is 1%~13% better than the four typical algorithms in existing studies in terms of IoU, OA, and F1-score evaluation indexes.

Key words: high-resolution remote sensing imagery, farmland parcel, deep learning, semantic segmentation, multi-scale features, semantic information enhancement, adhesion of adjacent parcel, incomplete parcel

中图分类号: 

  • TP751