[1] |
李劲, 李欣, 刘小平, 等. MHz重复频率脉冲功率技术[J]. 强激光与粒束, 2010, 22(4):725-729.
doi: 10.3788/HPLPB
|
|
Li Jin, Li Xin, Liu Xiaoping, et al. MHz repetition ratepulsedpower technology[J]. High Power Laser and Particle Beams, 2010, 22(4):725-729.
doi: 10.3788/HPLPB
|
[2] |
Schlitt B, Eichler G, Hermann S, et al. Modernisation of the 10 MHz RF systems at the GSI UNILAC[C]. Geneva: The Twenty-eighth Linear Accelerator Conference, 2017:9-15.
|
[3] |
Liu Z X, Zou B, Li W Q, et al. Application of pulse & high voltage power source[J]. China Environmental Protection Industry, 2017(2):29-31.
|
[4] |
石小燕, 丁恩燕, 梁勤金, 等. 20 kV/20 kHz/100 A高压脉冲源设计[J]. 强激光与粒束, 2018, 30(4):105-109.
|
|
Shi Xiaoyan, Ding Enyan, Liang Qinjin, et al. Design of 20 kV/20 kHz/100 A high voltage pulse generator[J]. High Power Laser and Particle Beams, 2018, 30(4):105-109.
|
[5] |
Zhang X D, Liu C. Research on calibration of the single hi-gh pulse voltage source in the parameters test equipment of power IGBT modules[J]. Electrical Measurement & Inst-rumentation, 2017, 54(16):106-109.
|
[6] |
饶俊峰, 王秀智, 王永刚, 等. 基于谐振电路的固态Marx发生器的顶降补偿[J]. 强激光与粒子束, 2022, 34(7):57-63.
|
|
Rao Junfeng, Wang Xiuzhi, Wang Yonggang, et al. Voltage droop compensation based on resonant circuit for solid-state Marx generators[J]. High Power Laser and Particle Beams, 2022, 34(7):57-63.
|
[7] |
栾崇彪. 高重复频率固态脉冲功率技术研究[C]. 北京: 中国工程物理研究院科技年报, 2016:773-778.
|
|
Luan Chongbiao. Research on high repetition rate solid-statepulse power technology[C]. Beijing: Annual Report of China Academy of Engineering Physics, 2016:773-778.
|
[8] |
伍友成, 杨宇, 何泱, 等. 重复频率低阻抗紧凑Marx脉冲功率源[J]. 强激光与粒子束, 2018, 30(7):147-152.
|
|
Wu Youcheng, Yang Yu, He Yang, et al. Compact repetitive Marx generator with low impedance[J]. High Power Laser and Particle Beams, 2018, 30(7):147-152.
|
[9] |
张耀, 刘楠楠, 袁斌. 一种用于高重频窄脉冲的六级传输线变压器的研制[J]. 电子技术, 2013, 42(3):68-70.
|
|
Zhang Yao, Liu Nannan, Yuan Bin. A 6-stage transmission line transformer for high frequency short pulse[J]. Electronic Technology, 2013, 42(3):68-70.
|
[10] |
郭帆, 贾伟, 谢霖燊, 等. 基于半导体开关和 LTD 技术的高重频快沿高压脉冲源[J]. 强激光与粒子束, 2016, 28(5):113-117.
|
|
Guo Fan, Jia Wei, Xie Linshen, et al. High power high repetition frequency generator based on MOSFET and LTD technology[J]. High Power Laser and Particle Beams, 2016, 28(5):113-117.
|
[11] |
姜松, 吴彤, 李孜, 等. MHz高压脉冲电源设计[J]. 强激光与粒束, 2019, 31(9):96-100.
|
|
Jiang Song, Wu Tong, Li Zi, et al. Design of MHz high volt-age pulse power supply[J]. High Power Laser and Particle Beams, 2019, 31(9):96-100.
|
[12] |
江伟华. 高重复频率脉冲功率技术及其应用:(7)主要技术问题和未来发展趋势[J]. 强激光与粒子束, 2015, 27(1):16-20.
|
|
Jiang Weihua. Repetition rate pulsed power technology and its applications:(vii)Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27(1):16-20.
|
[13] |
饶俊峰. 基于固态开关的重复脉冲功率源的脉冲调制技术及其应用[D]. 上海: 复旦大学, 2013:37-52.
|
|
Rao Junfeng. Pulse modulation technology of repeated pulsepower source based on solid state switch and itsapplication[D]. Shanghai: Fudan University, 2013:37-52.
|
[14] |
郭小强, 王学惠, 伞国成, 等. RC缓冲电路对GaN E-HEMTs开关电压振荡影响分析[J]. 电力电子技术, 2018, 52(9):21-23.
|
|
Guo Xiaoqiang, Wang Xuehui, San Guocheng, et al. Analysis ofimpact of RC snubber circuit on switching voltage oscillation of GaN E-HEMTs[J]. Power Electronics, 2018, 52(9):21-23.
|
[15] |
黄寅, 孟永鹏, 黄彦钦, 等. 一种双回路驱动的纳秒快前沿高重复频率脉冲源[J]. 西安交通大学学报, 2021, 55(10):114-122.
|
|
Huang Yin, Meng Yongpeng, Huang Yanqin, et al. A pulse source with dual-loop driven nanosecond fast risetime and high repetition frequency[J]. Journal of Xi'an Jiaotong University, 2021, 55(10):114-122.
|
[16] |
Rong L I, Rong Q I. The design of new compact Marx ge-nerator[J]. Chinese Journal of Electronics, 2018, 27(6):1305-1308.
doi: 10.1049/cje.v27.6
|
[17] |
王传志, 李学华, 秦正霞, 等. 基于最小二乘法的脉冲压缩技术研究[J]. 电子科技, 2018, 31(5):44-47.
|
|
Wang Chuanzhi, Li Xuehua, Qin Zhengxia, et al. Research on pulse compression technology based on least square method[J]. Electronic Science and Technology, 2018, 31(5):44-47.
|
[18] |
田元波, 刘桂礼, 孔全存. 基于界面酸化的微细电解加工用脉冲电源设计[J]. 电子科技, 2021, 34(8):37-42.
|
|
Tian Yuanbo, Liu Guili, Kong Quancun. Design of pulse po-wer supply for micro ECM based on interface acidification[J]. Electronic Science and Technology, 2021, 34(8):37-42.
|