[1] |
隋心怡, 王瑞刚, 张鸿翔 . 一种改进的K-均值聚类算法[J]. 计算机与数字工程, 2018,46(4):682-685.
|
|
Sui Xinyi, Wang Ruigang, Zhang Hongxiang . An improved K-means clustering algorithm[J]. Computer and Digital Engineering, 2018,46(4):682-685.
|
[2] |
费贤举, 李虹, 田国忠 . 基于特征加权理论的数据聚类算法[J].沈阳工业大学学报(自然科学版), 2018(1):77-81.
|
|
Fei Xianju, Li Hong, Tian Guozhong . Data clustering algorithm based on feature weighting theory[J].Journal of Shenyang University of Technology(Natural Science Edition), 2018(1):77-81.
|
[3] |
田帅, 陈谊 . 基于子空间聚类的高维数据可视分析方法综述[J]. 计算机工程与应用, 2018,54(13):25-32.
|
|
Tian Shuai, Chen Yi . Summary of visual analysis of high-dimensional data based on subspace clustering[J]. Computer Engineering and Applications, 2018,54(13):25-32.
|
[4] |
Liu S, Dan M, Wang B , et al. Visualizing high-dimensional data: advances in the past decade[J]. IEEE Transactions on Visualization & Computer Graphics, 2017,23(3):1245-1249.
|
[5] |
Ultsch A, Lötsch J . Machine-learned cluster identification in high-dimensional data[J]. Journal of Biomedical Informatics, 2017,66(5):95-104.
|
[6] |
徐雪丽, 赵学靖 . 稀疏谱聚类算法在高维数据上的应用[J]. 中国科学技术大学学报, 2017,47(4):311-319.
|
|
Xu Xueli, Zhao Xuejing . Application of sparse spectral clustering algorithm to high-dimensional data[J]. Journal of China University of Science and Technology, 2017,47(4):311-319.
|
[7] |
陈海辉, 周向东, 施伯乐 . 基于稀疏正则化的高维数据可视化分析技术[J]. 计算机应用与软件, 2017,34(6):22-26.
|
|
Chen Haihui, Zhou Xiangdong, Shi Baile . High-dimensional data visualization analysis technology based on sparse regularization[J]. Computer Applications and Software, 2017,34(6):22-26.
|
[8] |
唐颖军, 黄淑英, 杨勇 , 等. 图像高维数据的K-means自适应聚类算法[J]. 小型微型计算机系统, 2016,37(8):1854-1856.
|
|
Tang Yingjun, Huang Shuying, Yang Yong , et al. K-means adaptive clustering algorithm for high-dimensional image data[J]. Minicomputer System, 2016,37(8):1854-1856.
|
[9] |
韩素青, 贾茹 . 基于稀疏约束非负矩阵分解的K-means聚类算法[J]. 数据采集与处理, 2017,32(6):1216-1222.
|
|
Han Suqing, Jia Ru . K-means clustering algorithm based on sparse constrained nonnegative matrix factorization[J]. Data Acquisition and Processing, 2017,32(6):1216-1222.
|
[10] |
王召月, 陈丽芳 . 基于Mean-shift全局立体匹配方法[J].计算机工程与科学, 2017(7):88-92.
|
|
Wang Zhaoyue, Chen Lifang . Global stereo matching method based on Mean-shift[J].Computer Engineering and Science, 2017(7):88-92.
|
[11] |
刘靖, 赵逢禹 . 高维数据降维技术及研究进展[J].电子科技, 2018(3):50-53.
|
|
Liu Jing, Zhao Fengyu . High-dimensional data dimension reduction technology and research progress[J]. Electronic Science and Technology, 2018,31(3):50-53.
|
[12] |
Dyer E L, Sankaranarayanan A C, Baraniuk R G . Greedy feature selection for subspace clustering[J]. Journal of Machine Learning Research, 2013,14(9):2487-2517.
|
[13] |
Modha D S, Spangler W S . Feature weighting in K-means clustering[J]. Machine Learning, 2003,52(3):217-237.
doi: 10.1023/A:1024016609528
|