[1] |
Norian K H . Measuring electrical components of lithium ion battery at different states of charge[J]. Journal of Power Sources, 2013,242(35):714-717.
|
[2] |
Zhang W, Wang L, Wang L , et al. An improved adaptive estimator for state-of-charge estimation of lithium-ion batteries[J]. Journal of Power Sources, 2018,40(2):422-433.
|
[3] |
Ke-Jin B, Ling J . Study on SOC estimation algorithm of lithium-ion battery of electric vehicle[J]. Computer Engineering & Science, 2012,34(12):169-173.
|
[4] |
陈息坤, 孙冬 . 锂离子电池建模及其参数辨识方法研究[J]. 中国电机工程学报, 2016,36(22):6254-6261.
|
|
Chen Xikun, Sun Dong . Research on Lithiumion battery modeling and model parameter identification methods[J]. Proceedings of the CSEE, 2016,36(22):6254-6261.
|
[5] |
余洁 . 带遗忘因子的递推最小二乘法在SCR喷氨量模型辨识中的应用[J]. 自动化应用, 2017(12):57-59.
|
|
Yu Jie . Application of recursive least square method with forgetting factor in identification of ammonia flow model in SCR denitration reactor[J]. Automation Application, 2017(12):57-59.
|
[6] |
鲍海静, 张韬, 张静 . 基于遗忘因子递推最小二乘法的伺服系统转动惯量辨识方法[J]. 上海电气技术, 2017(3):9-13.
|
|
Bao Haijing, Zhang Tao, Zhang Jing . Identification of rotary inertia in servo system based on forgetting factor RLS[J]. Shanghai Electric Technology, 2017(3):9-13.
|
[7] |
陈涵, 刘会金, 李大路 , 等. 可变遗忘因子递推最小二乘法对时变参数测量[J]. 高电压技术, 2008,34(7):1474-1477.
|
|
Chen Han, Liu Huijin, Li Dalu , et al. Time-varying parameters measurement by least square method with variable forgetting factors[J]. High Voltage Technology, 2008,34(7):1474-1477.
|
[8] |
Dalali M, Kazemi Karegar H . Modified Thevenin-based voltage instability indicator and load shedding approach for MCF connected network[J]. IET Generation, Transmission & Distribution, 2017,11(7):1745-1753.
|
[9] |
Shen S, Lin D, Wang H , et al. An adaptive protection scheme for distribution systems with DGs based on optimized thevenin equivalent parameters estimation[J]. IEEE Transactions on Power Delivery, 2017,32(1):411-419.
|
[10] |
Rahman M A, Anwar S, Izadian A . Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method[J]. Journal of Power Sources, 2016,30(7):86-97.
|
[11] |
Xia B, Zhao X, De Callafon R , et al. Accurate Lithiumion battery parameter estimation with continuous-time system identification methods[J]. Applied Energy, 2016,179(3):426-436.
|
[12] |
时振伟, 纪志成, 王艳 . 多元系统耦合带遗忘因子有限数据窗递推最小二乘辨识方法[J]. 控制与决策, 2016,31(10):1765-1771.
|
|
Shi Zhenwei, Ji Zhicheng, Wang Yan . Coupled finite-data-window RLS identification approache with forgetting factors for multi-variate systems[J]. Control and Decision, 2016,31(10):1765-1771.
|
[13] |
He H, Zhang X, Xiong R , et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy, 2012,39(1):310-318.
|
[14] |
Xiong R, He H, Sun F , et al. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach[J]. IEEE Transactions on Vehicular Technology, 2013,62(1):108-117.
|
[15] |
Xiong R, Sun F, He H , et al. A data-driven adaptive state of charge and power capability joint estimator of Lithiumion polymer battery used in electric vehicles[J]. Energy, 2013,63(3):295-308.
|
[16] |
Vahidi A, Stefanopoulou A, Peng H . Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments[J]. Vehicle System Dynamics, 2005,43(1):31-55.
|
[17] |
Waag W, Bitz K, Stefan , et al. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy, 2013,102(2):885-897.
|