Electronic Science and Technology ›› 2020, Vol. 33 ›› Issue (3): 50-55.doi: 10.16180/j.cnki.issn1007-7820.2020.03.010
Previous Articles Next Articles
ZENG Zhao,WU Wei,WANG Xin
Received:
2019-02-14
Online:
2020-03-15
Published:
2020-03-25
Supported by:
CLC Number:
ZENG Zhao,WU Wei,WANG Xin. Improved Kernelized Correlation Filter Tracking[J].Electronic Science and Technology, 2020, 33(3): 50-55.
Table 1
Test video in experiments"
视频 | 帧数 | 主要影响因素 |
---|---|---|
Jogging1 | 307 | 尺度、遮挡、快速运动、旋转 |
Bird2 | 99 | 背景干扰、遮挡、快速运动、旋转 |
Jumping | 313 | 快速运动、模糊、遮挡 |
Freeman4 | 297 | 快速运动、背景干扰、尺度、遮挡、 |
Shaking | 365 | 光照、遮挡、快速运动、背景干扰 |
Surfer | 376 | 快速运动、模糊、背景干扰、旋转 |
ClifBar | 472 | 背景干扰、尺度、快速运动、旋转 |
BlurBody | 334 | 模糊、遮挡、形变、旋转、背景干扰 |
Couple | 140 | 光照、快速运动、背景干扰 |
Woman | 597 | 光照、尺度、遮挡、模糊、快速运动 |
Table 2
Center location error/pixel"
视频 | Ours | KCF | DSST | CN |
---|---|---|---|---|
Jogging1 | 4.22 | 87.90 | 110.00 | 101.00 |
Bird2 | 15.70 | 21.40 | 55.70 | 5.99 |
Jumping | 4.44 | 26.20 | 37.50 | 61.60 |
Freeman4 | 10.10 | 27.10 | 5.43 | 46.00 |
Shaking | 6.92 | 113.00 | 8.08 | 15.10 |
Surfer | 5.39 | 8.51 | 20.10 | 9.93 |
ClifBar | 8.31 | 37.10 | 5.45 | 31.60 |
BlurBody | 8.71 | 64.20 | 91.20 | 38.60 |
Couple | 11.40 | 47.20 | 125.00 | 123.00 |
Woman | 9.40 | 10.10 | 9.67 | 283.00 |
平均 | 7.588 | 44.271 | 46.813 | 71.582 |
Table 3
Distance precision/%"
视频 | Ours | KCF | DSST | CN |
---|---|---|---|---|
Jogging1 | 97.068 | 23.453 | 23.127 | 23.799 |
Bird2 | 77.778 | 47.475 | 47.475 | 98.990 |
Jumping | 98.083 | 33.866 | 5.112 | 5.112 |
Freeman4 | 87.633 | 51.943 | 95.760 | 26.148 |
Shaking | 98.356 | 1.918 | 100.000 | 69.863 |
Surfer | 97.872 | 90.957 | 69.149 | 79.255 |
ClifBar | 93.856 | 44.280 | 99.788 | 60.169 |
BlurBody | 97.006 | 58.383 | 61.976 | 54.192 |
Couple | 76.492 | 25.714 | 10.714 | 10.714 |
Woman | 93.970 | 93.802 | 93.802 | 24.958 |
平均 | 91.811 | 47.179 | 60.690 | 45.32 |
Table 4
Overlap precision/%"
视频 | Ours | KCF | DSST | CN |
---|---|---|---|---|
Jogging1 | 78.2 | 22.50 | 22.50 | 22.50 |
Bird2 | 76.8 | 47.50 | 47.50 | 99.00 |
Jumping | 93.6 | 28.10 | 4.790 | 4.79 |
Freeman4 | 54.4 | 18.40 | 45.90 | 17.30 |
Shaking | 98.6 | 1.37 | 100.00 | 67.10 |
Surfer | 93.9 | 38.60 | 29.00 | 34.80 |
ClifBar | 69.5 | 29.90 | 88.30 | 27.60 |
BlurBody | 99.4 | 58.70 | 62.30 | 80.80 |
Couple | 66.4 | 24.30 | 10.70 | 10.70 |
Woman | 96.7 | 93.60 | 93.30 | 24.30 |
平均 | 82.75 | 36.297 | 50.429 | 38.889 |
[1] | 尹宏鹏, 陈波, 柴毅 , 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016,42(10):1466-1489. |
Yin Hongpeng, Chen Bo, Chai Yi , et al. Asurvey of vision-based target detection and tracking[J]. Journal of Automation, 2016,42(10):1466-1489. | |
[2] | 刘紫燕, 唐虎, 冯亮 . 基于FPGA的机器视觉技术视频跟踪系统实现[J]. 电子科技, 2018,31(9):41-44,49. |
Liu Ziyan, Tang Hu, Feng Liang . Implementation of machine vision technology video tracking system based on FPGA[J]. Electronic Science and Technology, 2018,31(9):41-44,49. | |
[3] | Chen Z, Hong Z, Tao D . An experimental survey on correlation filter-based tracking[J]. Computer Science, 2015,53(25):68-83. |
[4] | Henriques J F, Caseiro R, Martins P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(3):583-596. |
[5] | 张雷, 于凤芹 . 基于置信图特性的改进时空上下文目标跟踪[J]. 计算机工程, 2016,42(8):277-281,288. |
Zhang Lei, Yu Fengqin . Improved spatiotemporal context target tracking based on confidence graph characteristics[J]. Computer Engineering, 2016,42(8):277-281,288. | |
[6] | Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]. Columbus: IEEE Conference on Computer Vision and Pattern Recognition, 2014. |
[7] | 张雷, 王延杰, 孙宏海 , 等. 采用核相关滤波器的自适应尺度目标跟踪[J]. 光学精密工程, 2016,24(2):448-459. |
Zhang Lei, Wang Yanjie, Sun Honghai , et al. Adaptivescale target tracking using kernel correlation filter[J]. Optical and Precision Engineering, 2016,24(2):448-459. | |
[8] | Danelljan M, Hger G, Khan F S, et al. Accurate scale estimation for robust visual tracking[C]. British: British Machine Vision Conference, 2014. |
[9] | Cheon M, Lee W, Yoon C , et al. Vision-based vehicle detection system with consideration of the detecting location[J]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(3):1243-1252. |
[10] | 李远状, 韩彦芳, 于书盼 . 一种核相关滤波器的多尺度目标跟踪方法[J]. 电子科技, 2018,31(10):1-5,10. |
Li Yuanzhuang, Han Yanfang, Yu Shupan . Amulti-scale target tracking method based on core-correlation filter[J]. Electronic Science and Technology, 2018,31(10):1-5,10. | |
[11] | Possegger H, Mauthner T, Bischof H. In defense of color-based model-free tracking[C]. Boston:IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
[12] | Ma C, Yang X, Zhang C, et al. Long-term correlation tracking[C]. Boston:IEEE Conference on Computer Vision & Pattern Recognition, 2015. |
[13] | Wang M, Liu Y, Huang Z. Large margin object tracking with circulant feature maps[C]. Honolulu:IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[14] | Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration[C]. Zurich:European Conference on Computer Vision, 2014. |
[15] | Yi W, Lim J, Yang M H. Online object tracking: a benchmark[C]. Portland:IEEE Conference on Computer Vision & Pattern Recognition, 2013. |
[16] | Joao F Henriques, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. Florence: European Conference on Computer Vision, 2012. |
|