[1] |
Stoppa M, Chiolerio A. Wearable electronics and smart textiles: A critical review[J]. Sensors, 2014,14(7):11957-11992.
doi: 10.3390/s140711957
|
[2] |
Nathan A, Ahnood A, Cole M T, et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 2012,5(100):1486-1517.
|
[3] |
许巍, 卢天健. 柔性电子系统及其力学性能[J]. 力学进展, 2008(2):137-150.
|
|
Xu Wei, Lu Tianjian. Flexible electronics system and their mechanical properties[J] Advances in Mechanics, 2008(2):137-150.
|
[4] |
Yang C, Lin W, Li Z, et al. Water-based isotropically conductive adhesives: towards green and low-cost flexible electronics[J]. Advanced Functional Materials, 2011,21(23):4582-4588.
doi: 10.1002/adfm.v21.23
|
[5] |
Semple J, Rossbauer S, Burgess C H, et al. Radio frequency coplanar ZnO schottky nanodiodes processed from solution on plastic substrates[J]. Small, 2016,12(15):1993-2000.
doi: 10.1002/smll.201503110
pmid: 26918520
|
[6] |
Yang C, Gu H, Lin W, et al. Silver nanowires: from scalable synjournal to recyclable foldable electronics[J]. Advanced Materials, 2011,23(27):3052-3056.
doi: 10.1002/adma.v23.27
|
[7] |
Oprea A, Barsan N, Weimar U, et al. Capacitive humidity sensors on flexible RFID labels[J]. Sensors and Actuators B (Chemical), 2008,132(2):404-410.
doi: 10.1016/j.snb.2007.10.010
|
[8] |
Higgins S G, Agostinelli T, Markham S, et al. Organic diode rectifiers based on a high-performance conjugated polymer for a near-field energy-harvesting circuit[J]. Advanced Materials, 2017,29(46):1703782.1-1703782.26.
|
[9] |
Zardetto V, Brown T M, Reale A, et al. Substrates for flexible electronics:a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties[J]. Journal of Polymer Science Part B Polymer Physics, 2011,49(9):638-648.
doi: 10.1002/polb.22227
|
[10] |
Singh R, Singh E, Nalwa H S. Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things[J]. RSC Advances. 2017,7(77):48597-48630.
doi: 10.1039/C7RA07191D
|
[11] |
Salmeron J F, Molina-Lopez F, Rivadeneyra A, et al. Design and development of sensing RFID tags on flexible foil compatible with EPC Gen 2[J]. Sensors Journal, 2014,14(12):4361-4371.
doi: 10.1109/JSEN.2014.2335417
|
[12] |
Tobjörk D, Österbacka R. Paper electronics[J]. Advanced Materials, 2011,23(17):1935-1961.
doi: 10.1002/adma.201004692
|
[13] |
Ostfeld A E, Gaikwad A M, Khan Y, et al. High-performance flexible energy storage and harvesting system for wearable electronics[J]. Scientific Reports, 2016(6):26122-26132.
|
[14] |
Striccoli M. Photolithography based on nanocrystals[J]. Science, 2017,35(7):353-354.
|
[15] |
Wang Y, Yan C, Cheng S Y, et al. Flexible RFID tag metal antenna on paper-based substrate by InkJet printing technology[J]. Advanced Functional Materials, 2019,29(9):1902579.1-1902579.11.
|
[16] |
Minemawari H, Yamada T, Matsui H, et al. InkJet printing of single-crystal films[J]. Nature, 2011,475(7356):364-367.
doi: 10.1038/nature10313
pmid: 21753752
|
[17] |
Kog H, Inui T, Miyamoto I, et al. A high-sensitivity printed antenna prepared by rapid low-temperature sintering of silver ink[J]. RSC Advances, 2016,6(87):84363-84368.
doi: 10.1039/C6RA19687J
|
[18] |
Kewen C, Pan Y Y. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications[J]. Nature Communications, 2018(9):5197-5207.
|
[19] |
Yin Z P, Huang Y A, Bu N B, et al. InkJet printing for flexible electronics: materials, processes and equipments[J]. Chinese Science Bulletin, 2010(30):15-39.
|
[20] |
Zhong T, Jin N, Yuan W, et al. Printable stretchable silver ink and application to printed RFID tags for wearable electronics[J]. Materials, 2019,12(18):3036-3050.
doi: 10.3390/ma12183036
|