Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (11): 48-57.doi: 10.16180/j.cnki.issn1007-7820.2022.11.008
Previous Articles Next Articles
SHEN Yihan,YANG Jinghui,WANG Hao
Received:
2021-04-30
Online:
2022-11-15
Published:
2022-11-11
Supported by:
CLC Number:
SHEN Yihan,YANG Jinghui,WANG Hao. A Hyperspectral Image Classification Method Based on Grid Diversity and Active Learning[J].Electronic Science and Technology, 2022, 35(11): 48-57.
[1] | 张兵. 光学遥感信息技术与应用研究综述[J]. 南京信息工程大学学报(自然科学版), 2018, 10(1):1-5. |
Zhang Bing. A survey of developments on optical remote sensing information technology and applications[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2018, 10(1):1-5. | |
[2] | 万东燕, 许桢英, 杨卿, 等. 基于PCA与SVM的焊缝缺陷信号分类方法[J]. 电子科技, 2020, 33(5):9-14. |
Wan Dongyan, Xu Zhenying, Yang Qing, et al. A method of weld defect classification based on PCA and SVM[J]. Electronic Science and Technology, 2020, 33(5):9-14. | |
[3] | 王瀛, 余岚旭, 王春喜, 等. 基于改进的IHS、PCA和小波变换的遥感图像融合算法[J]. 计算机与数字工程, 2021, 49(4):797-803. |
Wang Ying, Yu Lanxu, Wang Chunxi, et al. Remote sensing image fusion algorithm based on improved IHS,PCA and wavelet transform[J]. Computer & Digital Engineering, 2021, 49(4):797-803. | |
[4] |
Da Silva A C, Soares S F C, Insausti M, et al. Two-dimensional linear discriminant analysis for classification of three-way chemical data[J]. Analytica Chimica Acta, 2016, 93(8): 53-62.
doi: 10.1016/0003-2670(77)80006-8 |
[5] | 王姗姗. 高光谱图像特征提取和分类算法研究[D]. 大连: 辽宁师范大学, 2020. |
Wang Shanshan. Research on hyperspectral image feature extraction and classification algorithm[D]. Dalian: Liaoning Normal University, 2020. | |
[6] | 张号逵, 李映, 姜晔楠. 深度学习在高光谱图像分类领域的研究现状与展望[J]. 自动化学报, 2018, 44(6):961-977. |
Zhang Haokui, Li Ying, Jiang Yenan. Deep learning for hyperspectral imagery classification:The state of the art and prospects[J]. Acta Automatica Sinica, 2018, 44(6):961-977. | |
[7] | 李响, 吕勇. 结合拉普拉斯特征映射的权重朴素贝叶斯高光谱分类算法[J]. 分析测试学报, 2020, 39(10):1293-1298. |
Li Xiang, Lü Yong. A weighted naive Bayes hyperspectral classification algorithm combined with Laplacian eigen mapping[J]. Journal of Instrumental Analysis, 2020, 39(10):1293-1298. | |
[8] |
Zhang H, Li Y, Zhang Y, et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network[J]. Remote Sensing Letters, 2017, 8(5):438-447.
doi: 10.1080/2150704X.2017.1280200 |
[9] | 李秉璇, 周冰, 贺宣, 等. 针对高光谱图像的目标分类方法现状与展望[J]. 激光与红外, 2020, 50(3):259-265. |
Li Bingxuan, Zhou Bing, He Xuan, et al. Status and prospects of target classification methods based on hyperspectral images[J]. Laser & Infrared, 2020, 50(3):259-265. | |
[10] | 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. |
Du Peijun, Xia Junshi, Xue Zhaohui, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256. | |
[11] |
杨承文, 李吉明, 杨东勇. 基于深度贝叶斯主动学习的高光谱图像分类[J]. 计算机工程与应用, 2019, 55(18):166-172.
doi: 10.3778/j.issn.1002-8331.1805-0427 |
Yang Chengwen, Li Jiming, Yang Dongyong. Active learning for hyperspectral image classification with deep Bayesian[J]. Computer Engineering and Applications, 2019, 55(18):166-172.
doi: 10.3778/j.issn.1002-8331.1805-0427 |
|
[12] | Yuan J, Hou X X, Xiao Y Q, et al. Multi-criteria active deep learning for image classification[J]. Knowledge-Based Systems, 2019, 17(2):86-94. |
[13] | 王立国, 商卉, 石瑶. 结合主动学习与标签传递算法的高光谱图像分类[J]. 哈尔滨工程大学学报, 2020, 41(5):731-737. |
Wang Liguo, Shang Hui, Shi Yao. Hyperspectral imagery classification based on active learning and label propagation[J]. Journal of Harbin Engineering University, 2020, 41(5):731-737. | |
[14] |
宋晗, 杨炜暾, 耿修瑞, 等. 基于卷积神经网络与主动学习的高光谱图像分类[J]. 中国科学院大学学报, 2020, 37(2):169-176.
doi: 10.7523/j.issn.2095-6134.2020.02.004 |
Song Han, Yang Weitun, Geng Xiurui, et al. Hyperspectral image classification based on convolutional neural network and active learning algorithm[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(2) :169-176.
doi: 10.7523/j.issn.2095-6134.2020.02.004 |
|
[15] | 侯超群. 主动学习策略研究及其在图像分类中的应用[D]. 厦门: 厦门大学, 2019. |
Hou Chaoqun. Research on strategies of active learning and its application to image classification[D]. Xiamen: Xiamen University, 2019. | |
[16] | 崔颖, 徐凯, 陆忠军, 等. 主动学习策略融合算法在高光谱图像分类中的应用[J]. 通信学报, 2018, 39(4):91-99. |
Cui Ying, Xu Kai, Lu Zhongjun, et al. Combination strategy of active learning for hyperspectral images classification[J]. Journal on Communications, 2018, 39(4):91-99. | |
[17] | 肖博林. 基于支持向量机的高光谱遥感影像分类[J]. 科技创新与应用, 2020(4):22-24. |
Xiao Bolin. Hyperspectral remote sensing image classification based on support vector machine[J]. Technology Innovation and Application, 2020(4):22-24. | |
[18] | 孙丽萍, 张希萌, 何睿, 等. 基于SVM的近红外黑木耳多糖含量分类[J]. 电子科技, 2019, 32(8):16-21. |
Sun Liping, Zhang Ximeng, He Rui, et al. Near-infrared scanning polysaccharide content classification of auricularia auricular based on SVM[J]. Electronic Science and Technology, 2019, 32(8):16-21. | |
[19] | 刘方园, 王水花, 张煜东. 支持向量机模型与应用综述[J]. 计算机系统应用, 2018, 27(4):1-9. |
Liu Fangyuan, Wang Shuihua, Zhang Yudong. Overview on models and applications of support vector machine[J]. Computer Systems & Applications, 2018, 27(4):1-9. |
[1] | KONG Fanshu,QI Jinpeng,GONG Hanxin,ZHU Junjun,CAO Yitong. A Fast Analysis Method of Pathological Data Based on Wave Vector Grading Technology [J]. Electronic Science and Technology, 2022, 35(7): 1-6. |
[2] | Meiyi QI,Aihua LIAO. Design of Reliability Evaluation System of Traction Motor Rolling Bearing Based on MATLAB App Designer [J]. Electronic Science and Technology, 2022, 35(3): 79-86. |
[3] | JIN Xiao,WU Fei,YAN Song,LU Wenxia,ZHANG Zhongyi. Fingerprint Location Method of Metro Station Based on GAWK-means [J]. Electronic Science and Technology, 2022, 35(2): 34-39. |
[4] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[5] | LI Na,GAO Bo,XIE Zongfu. Research on Scheduling Method of Layered Heterogeneous Signal Processing Platform [J]. Electronic Science and Technology, 2022, 35(2): 7-13. |
[6] | ZHANG Wei,LIU Na,JIANG Yang,LI Qingdu. Garbage Detection and Classification Based on YOLO Neural Network [J]. Electronic Science and Technology, 2022, 35(10): 45-50. |
[7] | LU Dongsheng,ZHANG Yujin,ZHU Hai,JIANG Yuewu. Image-Splicing Forgery Detection Based on Noise Consistency Under Geometric Constraints [J]. Electronic Science and Technology, 2022, 35(10): 51-58. |
[8] | CHENG Xiaoya,ZHANG Lei. Research on Occluded Face Recognition Method Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(1): 35-39. |
[9] | HAO Miao,CHEN Linqiang. Chinese Microblog Polarity Classification Based on Hownet and PMI [J]. Electronic Science and Technology, 2021, 34(7): 50-55. |
[10] | ZHANG Pengfei,WEI Cunwei,LIU Xiankang,LIU Anran,YANG Ou,LIN Yonglin. Research on Ship Target Recognition Method of Narrowband Radar [J]. Electronic Science and Technology, 2021, 34(6): 50-55. |
[11] | LIU Shu,SHAO Jie,ZHANG Yiting,ZHANG Shanzhang. ECG Classification Based on Bispectrum and Spectral Features [J]. Electronic Science and Technology, 2021, 34(5): 42-46. |
[12] | HE Zhonglin,ZHOU Ping. Research on Sorting of Retired Lithium Battery Based on Radial Basis Function Neural Network [J]. Electronic Science and Technology, 2021, 34(2): 38-44. |
[13] | ZHU Bin,LIU Zilong. Image Classification Method Using Convolutional Neural Network Based on New Initial Module [J]. Electronic Science and Technology, 2021, 34(2): 52-56. |
[14] | ZHOU Xiaobo,ZOU Renling,LU Xuhua,WANG Haibin,ZHANG Junxiang. Research Progress of Surface Electromyography Signal Classifier Based on Artificial Neural Network [J]. Electronic Science and Technology, 2021, 34(2): 62-67. |
[15] | PENG Rongjie,PENG Yaxiong,LU Anjiang. Face Recognition System Based on Improved PCA+SVM [J]. Electronic Science and Technology, 2021, 34(12): 56-61. |
|