[1] |
邬贺铨. 邬贺铨院士:大数据时代的发展趋势[J]. 广东科技, 2016, 25(17):30-33.
|
|
Wu Hequan. Academician Wu Hequan:The development trend of big data era[J]. Guangdong Science and Technology, 2016, 25(17):30-33.
|
[2] |
严霄凤, 张德馨. 大数据研究[J]. 计算机技术与发展, 2013, 23(4):168-172.
|
|
Yan Xiaofeng, Zhang Dexin. Big data research[J]. Computer Technology and Development, 2013, 23(4):168-172.
|
[3] |
张娜. 大数据时代的挑战、价值与应对策略[J]. 数码世界, 2021(1):62-63.
|
|
Zhang Na. Challenges values and countermeasures in the era of big data[J]. Digital World, 2021(1):62-63.
|
[4] |
姚艳秋. 基于趋势分析的变电站设备异常检测方法[J]. 吉林大学学报(理学版), 2021, 59(3):649-652.
|
|
Yao Yanqiu. Abnormality detection method of substation equipment based on tendency analysis[J]. Journal of Jilin University(Science Edition), 2021, 59(3):649-652.
|
[5] |
范程华, 王群京, 曹欣远, 等. 基于信号突变点校正的太阳能电池片缺陷检测方法[J]. 激光与光电子学进展, 2020, 57(6):238-243.
|
|
Fan Chenghua, Wang Qunjing, Cao Xinyuan, et al. Defect detection method for solar cell based on signal catastrophe-points correction[J]. Laser & Optoelectronics Progress, 2020, 57(6):246-251.
|
[6] |
Atashgar K. Identification of the change point: An overview[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(9-12):1663-1683.
doi: 10.1007/s00170-012-4131-2
|
[7] |
邹俊晨, 齐金鹏, 李娜, 等. 一种快速的突变点在线检测算法设计与实现[J]. 电子科技, 2020, 33(8):10-15.
|
|
Zou Junchen, Qi Jinpeng, Li Na, et al. Design and implementation of a fast online algorithm for mutation point detection[J]. Electronic Science and Technology, 2020, 33(8):10-15.
|
[8] |
李娜, 齐金鹏, 邹俊晨, 等. 一种基于脑电波突变分析的癫痫疾病检测方法[J]. 信息技术, 2019, 43(12):41-46.
|
|
Li Na, Qi Jinpeng, Zou Junchen, et al. Epilepsy disease detection based on drain wave mutation analysis[J]. Information Technology, 2019, 43(12):41-46.
|
[9] |
Qi J P, Qi J, Pu F, et al. Multi-channel detection for abrupt change based on the ternary search tree and kolmogorov statistic method[C]. Hangzhou: Proceedings of the Thirty-fourth Chinese Control Conference, 2015.
|
[10] |
宋向忠. “t”检验在新建分析方法评价中的应用[J]. 石化技术, 2021, 28(7):49-50.
|
|
Song Xiangzhong. Application of "t" test in evaluation of new analytical methods[J]. Petrochemical Technology, 2021, 28(7):49-50.
|
[11] |
侯澍旻, 李友荣, 刘光临. 一种基于KS检验的时间序列非线性检验方法[J]. 电子与信息学报, 2007(4):808-810.
|
|
Hou Shumin, Li Yourong, Liu Guangfen. A nonlinear test method for time series based on KS test[J]. Journal of Electronics & Information technology, 2007(4):808-810.
|
[12] |
Liu J L, Qi J P, Zou J C, et al. Multiple change points detection method based on TSTKS and CPI sliding window strategy[C]. Shenzhen: Proceedings of Chinese Intelligent Systems Conference, 2020.
|
[13] |
李建中, 张冬冬. 滑动窗口规模的动态调整算法[J]. 软件学报, 2004(12):1800-1814.
|
|
Li Jianzhong, Zhang Dongdong. Algorithms for dynamically adjusting the sizes of sliding windows[J]. Journal of Software, 2004(12):1800-1814.
|
[14] |
康伟, 李战怀, 张龙波. 基于滑动窗口的数据流连接聚集查询降载策略[J]. 计算机工程, 2009, 35(22):50-52.
|
|
Kang Wei, Li Zhanhuai,Zhang Longbo.Load shedding strategy of join aggregation query over data streams based on sliding window[J]. Computer Engineering, 2009, 35(22):50-52.
|
[15] |
苏卫星, 朱云龙, 刘芳, 等. 时间序列异常点及突变点的检测算法[J]. 计算机研究与发展, 2014, 51(4):781-788.
|
|
Su Weixing, Zhu Yunlong, Liu Fang, et al. Outliers and change-points detection algorithm for time series[J]. Journal of Computer Research and Development, 2014, 51(4):781-788.
|
[16] |
张媛, 李常斌, 王刘明, 等. 几种河川径流序列突变检验方法的对比[J]. 水利水电技术, 2020, 51(2):38-47.
|
|
Zhang Yuan, Li Changbin, Wang Liuming, et al. Application and comparison of several test methods for changepoints diagnosis in stream flow variations[J]. Water Resources and Hydropower Engineering, 2020, 51(2):38-47.
|
[17] |
刘弹, 李晓婉, 梁霖, 等. 采用时间序列突变点检测的滚动轴承性能退化评价方法[J]. 西安交通大学学报, 2019, 53(12):10-16.
|
|
Liu Dan, Li Xiaowan, Liang Lin, et al. A method for evaluating performance degradation of rolling bearings using detection of time series mutation point[J]. Journal of Xi'an Jiaotong University, 2019, 53(12):10-16.
|
[18] |
刘杰, 房俊, 雷峰津. 电能质量异常数据在线检测方法[J]. 计算机工程与应用, 2020, 56(9):240-247.
doi: 10.3778/j.issn.1002-8331.1901-0084
|
|
Liu Jie, Fang Jun, Lei Fengjin. On-line detection method for abnormal data of power quality[J]. Computer Engineering and Applications, 2020, 56(9):240-247.
doi: 10.3778/j.issn.1002-8331.1901-0084
|
[19] |
王文, 饶元, 李绍稳, 等. 基于预测模型的异常农情数据在线检测方法的研究[J]. 湖南农业大学学报(自然科学版), 2020, 46(4):495-500.
|
|
Wang Wen, Rao Yuan, Li Shaowen, et al. Research on online detection method of abnormal agricultural condition data based on predictive model[J]. Journal of Hunan Agricultural University(Natural Science Edition), 2020, 46(4):495-500.
|
[20] |
丁智国, 莫毓昌, 杨凡. 一种新的在线流数据异常检测方法[J]. 计算机科学, 2016, 43(10):63-65.
doi: 10.11896/j.issn.1002-137X.2016.10.011
|
|
Ding Zhiguo, Mo Yuchang, Yang Fan. Novel anomaly detection method of online streaming data[J]. Computer Science, 2016, 43(10):63-65.
doi: 10.11896/j.issn.1002-137X.2016.10.011
|