[1] |
王晓阳, 郑骁庆, 肖仰华. 智慧搜索中的实体与关联关系建模与挖掘[J]. 通信学报, 2015, 36(12):17-27.
|
|
Wang Xiaoyang, Zheng Xiaoqing, Xiao Yanghua. Entity-relation modeling and discovery for smart search[J]. Journal of Communications, 2015, 36(12):17-27.
|
[2] |
Peng P, Zou L, Guan R. Accelerating partial evaluation in distributed SPARQL query evaluation[C]. Macau: Proceedings of the IEEE Thirty-fifth International Conference on Data Engineering, 2019.
|
[3] |
Han S, Zou L, Yu J X, et al. Keyword search on RDF graphs-a query graph assembly approach[C]. Singapore: Proceedings of the ACM on Conference on Information and Knowledge Management, 2017.
|
[4] |
Zou L, Huang R, Wang H, et al. Natural language question answering over RDF: A graph data driven approach[C]. Snowbird: Proceedings of the ACM International Conference on Management of Data, 2014.
|
[5] |
Zheng W, Yu J X, Zou L, et al. Question answering over knowledge graphs: Question understanding via template decomposition[J]. Proceedings of the Very Large Data Base Endowment, 2018, 11(11):1373-1386.
|
[6] |
Huang X, Zhang J, Li D, et al. Knowledge graph embedding based question answering[C]. Melbourne: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 2019.
|
[7] |
Khan A, Wu Y, Aggarwal C C, et al. NeMa:Fast graph search with label similarity[J]. Proceedings of the Very Large Data Base Endowment, 2013, 6(3):181-192.
|
[8] |
Jin J, Khemmarat S, Gao L, et al. Querying web-scale information networks through bounding matching scores[C]. Firenze: Proceedings of the Twenty-fourth International Conference on World Wide Web, 2015.
|
[9] |
Gao J, Liu P, Kang X, et al. PRS: Parallel relaxation simulation for massive graphs[J]. The Computer Journal, 2016, 59(6):848-860.
doi: 10.1093/comjnl/bxu159
|
[10] |
Hong L, Zou L, Lian X, et al. Subgraph matching with set similarity in a large graph database[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(9):2507-2521.
doi: 10.1109/TKDE.2015.2391125
|
[11] |
Mottin D, Lissandrini M, Velegrakis Y, et al. Exemplar queries: a new way of searching[J]. The Very Large Data Base Journal, 2016, 25(6):741-765.
|
[12] |
Zheng W, Zou L, Lian X, et al. Graph similarity search with edit distance constraint in large graph databases[C]. San Francisco: Proceedings of the Twenty-second ACM International Conference on Information and Knowledge Management, 2013.
|
[13] |
Zheng W, Zou L, Peng W, et al. Semantic SPARQL similarity search over RDF knowledge graphs[J]. Proceedings of the Very Large Data Base Endowment Endowment, 2016, 9(11):840-851.
|
[14] |
Shekarpour S, Marx E, Auer S, et al. RQUERY: Rewriting text queries to alleviate the vocabulary mismatch problem on RDF knowledge bases[C]. San Francisco: Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence, 2017.
|
[15] |
Auer S, Lehmann J, Hellmann S. Linkedgeodata:Adding a spatial dimension to the web of data[C]. Heidelberg: Proceedings of the International Semantic Web Conference, 2009.
|
[16] |
Stadler C, Lehmann J, K Höffner, et al. Linkedgeodata: A core for a web of spatial open data[J]. Semantic Web, 2012, 3(4):333-354.
doi: 10.3233/SW-2011-0052
|
[17] |
Chen J, Deng S, Chen H. Crowdgeokg:Crowdsourced geo-knowledge graph[C]. Singapore: Proceedings of the China Conference on Knowledge Graph and Semantic Computing, 2017.
|
[18] |
Wang Y X, Khan A, Wu T X, et al. Semantic guided and response times bounded top-k similarity search over knowledge graphs[C]. Dallsa: Proceedings of the IEEE Thirty-sixth International Conference on Date Engineering, 2020.
|
[19] |
Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data[C]. Lake Tahoe: Neural Information Processing Systems, 2013.
|