[1] |
符山, 吕艾临, 闫树. 知识图谱的概念与应用[J]. 信息通信技术与政策, 2019(5):10-13.
|
|
Fu Shan, Lü Ailin, Yan Shu. Concept and application of knowledge graph[J]. Information and Communication Technology and Policy, 2019(5):10-13.
|
[2] |
张正航, 钱育蓉, 行艳妮, 等. 知识表示学习方法研究综述[J]. 计算机应用研究, 2021, 38(4):961-967.
|
|
Zhang Zhenghang, Qian Yurong, Xing Yanni, et al. Survey of knowledge representation learning methods[J]. Application Research of Computers, 2021, 38(4):961-967.
|
[3] |
王昊奋. 知识图谱方法、实践与应用[M]. 北京: 电子工业出版社, 2019.
|
|
Wang Haofen. Knowledge mapping method, practice and application[M]. Beijing: Publishing House of Electronics Industry, 2019.
|
[4] |
张仕森, 孙宪坤, 尹玲, 等. 基于神经网络的文本标题生成原型系统设计[J]. 电子科技, 2021, 34(5):35-41.
|
|
Zhang Shisen, Sun Xiankun, Yin Ling, et al. Design of text title generation prototype system based on neural network[J]. Electronic Science and Technology, 2021, 34(5):35-41.
|
[5] |
Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data[C]. Lake Tahoe: Proceedings of the Neural Information Processing Systems, 2013.
|
[6] |
Nickel M, Tresp V, Kriegel H P. A three-way model for collective learning on multi-relational data[C]. Bellevue: Proceedings of the International Conference on International Conference on Machine Learning, 2011.
|
[7] |
Wang Y, Zou Y, Wang W. Manifold-based visual object counting[J]. IEEE Transactions on Image Processing, 2018, 27(7):3248-3263.
doi: 10.1109/TIP.2018.2799328
pmid: 29641404
|
[8] |
Socher R, Chen D, Manning C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]. Lake Tahoe: Proceedings of the Advances in Neural Information Processing Systems, 2013.
|
[9] |
Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2D knowledge graph embeddings[C]. New Orleans: Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
|
[10] |
Wang Z, Zhang J, Feng J, et al. Knowledge graph embedding by translating on hyperplanes[C]. Quebec City: Proceedings of the Twenty-eighth AAAI Conference on Artificial Intelligence, 2014.
|
[11] |
Lin Y, Liu Z, Sun M, et al. Learning entity and relation embedding for knowledge graph completion[C]. Austin:Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
|
[12] |
Ji G, He S, Xu L, et al. Knowledge graph embedding via dynamic mapping matrix[C]. Beijing: Proceedings of the Fifty-third Annual Meeting of the Association for Computational Linguistics and the Seventh International Joint Conference on Natural Language Processing, 2015.
|
[13] |
He S, Liu K, Ji G, et al. Learning to represent knowledge graphs with gaussian embedding[C]. Montreal: Proceedings of the Twenty-fourth ACM International on Conference on Information and Knowledge Management, 2015.
|
[14] |
马幪浩, 王喆. 小样本下基于Wasserstein距离的半监督学习算法[J]. 计算机工程与应用, 2021, 31(5):1-9.
|
|
Ma Menghao, Wang Zhe. A semi-supervised learning method via Wasserstein distance under small samples condition[J]. Computer Engineering and Applications, 2021, 5(31):1-9.
|
[15] |
Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[C]. Doha: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014.
|
[16] |
卢佳伟, 陈玮, 尹钟. 融合TextRank算法的中文短文本相似度计算[J]. 电子科技, 2020, 33(10):51-56.
|
|
Lu Jiawei, Chen Wei, Yin Zhong. Chinese short text similarity calculation based on TextRank algorithm[J]. Electronic Science and Technology, 2020, 33(10):51-56.
|
[17] |
王群朋, 唐存宝. 基于层次分析法和D-S证据理论的码头风险评估[J]. 广州航海学院学报, 2021, 29(1):1-6.
|
|
Wang Qunpeng, Tang Cunbao. Pier risk assessment based on the analytic hierarchy process and D-S evidence theory[J]. Journal of Guangzhou Maritime University, 2021, 29(1):1-6.
|