[1] |
王丽萍, 汪成, 邱飞岳, 等. 深度图像中的3D手势姿态估计方法综述[J]. 小型微型计算机系统, 2021, 42(6):1227-1235.
|
|
Wang Liping, Wang Cheng, Qiu Feiyue, et al. Survey of 3D hand pose estimation methods using depth map[J]. Journal of Chinese Computer Systems, 2021, 42(6):1227-1235.
|
[2] |
张哲. 基于深度图像的3D手部关键点检测研究[D]. 北京: 北京交通大学, 2021:52-55.
|
|
Zhang Zhe. Research on 3D hand key point detection based on depth image[D]. Beijing: Beijing Jiaotong University, 2021:52-55.
|
[3] |
吴海波, 王晨, 崔禹. 深度图像预处理算法研究[J]. 电子科技, 2021, 34(11):31-36.
|
|
Wu Haibo, Wang Chen, Cui Yu. Research on depth image preprocessing algorithm[J]. Electronic Science and Technology, 2021, 34(11):31-36.
|
[4] |
Sinha A, Choi C, Ramani K. Deephand:Robust hand pose estimation by completing a matrix imputed with deep features[C]. Las Vegas: IEEE Conference on Computer Vision and Pattern Recognition, 2016;4150-4158.
|
[5] |
Guo H, Wang G, Chen X, et al. Region ensemble network:Improving convolutional network for hand pose estimation[C]. Beijing: IEEE International Conference on Image Processing, 2017:4512-4516.
|
[6] |
Ge L H, Liang H, Thalmann D, et al. The the third convol-utional neural networks for efficient and robust hand pose estimation from single depth images[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition, 2017:5679-5688.
|
[7] |
Xiong F, Zhang B, Xiao Y, et al. A2J:Anchor-to-Joint regression network for the third articulated pose estimat-ion from a single depth image[C]. Seoul: IEEE/CVF International Conference on Computer Vision, 2019:110-117.
|
[8] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition, 2017:936-944.
|
[9] |
Fu C Y, Liu W, Ranga A, et al. Dssd:Deconvolutional single shot detector[EB/OL].(2017-1-23) [2022-12-26] https://arxiv.org/abs/1701.06659.
|
[10] |
Li Y, Li J, Lin W, et al. Tiny-DSOD:Lightweight object detection for resource-restricted usages[EB/OL].(2018-7-29) [2022-12-26] https://arxiv.org/abs/1807.11013.
|
[11] |
Zhang X, Zhou X, Lin M, et al. Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]. Salt Lake City: IEEE Conference on Computer Vision and Pattern Recognition, 2018:6848-6856.
|
[12] |
Howard A G, Zhu M, Chen B, et al. Mobilenets:Efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-4-17) [2022-12-26] https://arxiv.org/abs/1704.04861.
|
[13] |
Ma N, Zhang X, Zheng H T, et al. Shufflenetv2:Practical guidelines for efficient CNN architecture design[C]. Munich: The European Conference on Computer Vision, 2018:122-138.
|
[14] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
|
[15] |
Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]. Long Beach: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:11534-11542.
|
[16] |
Tang D, Jin C H, Tejani A, et al. Latent regression forest:Structured estimation of the third articulated hand posture[C]. Columbus: IEEE Conference on Computer Vision and Pattern Recognition, 2014:3786-3793.
|
[17] |
Tompson J, Stein M, Lecun Y, et al. Real-time continuou-s pose recovery of human hands using convolutional networks[J]. ACM Transactions on Graphics, 2014, 33(5):1-10.
|
[18] |
Qin Z, Li Z, Zhang Z, et al. ThunderNet:Towards real-time generic object detection on mobile devices[C]. Seoul: IEEE/CVF International Conference on Computer Vision, 2019:6717-6726.
|
[19] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake City: IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
|
[20] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
|
[21] |
Zhou X, Wan Q, Zhang W, et al. Model-based deep handpose estimation[EB/OL].(2016-06-22) [2022-12.26]https://arxiv.org/abs/1606.06854.
|
[22] |
Oberweger M, Lepetit V. Deepprior++:Improving fast and accurate the third hand pose estimation[C]. Venice: IEEE International Conference on Computer Vision Workshops, 2017:585-594.
|
[23] |
Guo H, Wang G, Chen X, et al. Towards good practices for deep the third hand pose estimation[EB/OL].(2017-07-23) [2022-12-26] https://arxiv.org/abs/1707.07248.
|
[24] |
Wan C, Probst T, Van Gool L, et al. Dense the third regression for hand pose estimation[C]. Salt Lake City: IEEE Conference on Computer Vision and Pattern Recognition, 2018:5147-5156.
|
[25] |
Ge L, Cai Y, Weng J, et al. Hand pointnet:The third hand pose estimation using point sets[C]. Salt Lake City: IEEE Conference on Computer Vision and Pattern Recognition, 2018:8417-8426.
|
[26] |
Chen X, Wang G, Guo H, et al. Pose guided structured region ensemble network for cascaded hand pose estimation[J]. Neurocomputing, 2020, 395(5):138-149.
doi: 10.1016/j.neucom.2018.06.097
|
[27] |
Du K, Lin X, Sun Y, et al. Crossinfonet:Multi-task infor-mation sharing based hand pose estimation[C]. Long Beach: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:9888-9897.
|
[28] |
Ge L, Ren Z, Yuan J. Point-to-Point regression pointnet for the third hand pose estimation[C]. Munich: European Conference on Computer Vision, 2018:489-505.
|
[29] |
Moon G, Chang J Y, Lee K M. V2V-posenet:Voxel-to-Voxel prediction network for accurate the third hand and human pose estimation from a single depth map[C]. Salt Lake City: IEEE Conference on Computer Vision and Pattern Recognition, 2018:5079-5088.
|
[30] |
Menges B, Sarrey M, Henaff P. Implementation, risk assessment and safety human/robot interaction of collaborative robot UR10[C]. Nancy: International Conference on Safety of Industrial Automated Systems, 2018:198-203.
|
[31] |
Quigley M, Conley K, Gerkey B, et al. ROS:An open-so-urce robot operating system[C]. Kobe: ICRA Workshop on Open Source Software, 2009:239-244.
|