Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (4): 78-86.doi: 10.16180/j.cnki.issn1007-7820.2022.04.013
Qingqing YUAN,Min JIANG,Yumei YANG
Received:
2020-11-17
Online:
2022-04-15
Published:
2022-04-15
Supported by:
CLC Number:
Qingqing YUAN,Min JIANG,Yumei YANG. Characteristic Signal Extraction of Non-Ideal Three-Phase Grid[J].Electronic Science and Technology, 2022, 35(4): 78-86.
Figure 13.
The negative sequence component extraction based on ISDFT in the case of a sudden change in the power grid voltage amplitude (a)Three-phase grid voltage with a sudden change in amplitude (b)The d-axis negative sequence component of three-phase grid voltage (c)The q-axis negative sequence component of three-phase grid voltage (d)Three-phase separated negative sequence component power voltage"
Figure 14.
The negative sequence component extraction based on ISDFT in the case of a sudden change in the power grid voltage phase (a)Three-phase grid voltage with a sudden change in phase (b)The d-axis negative sequence component of the three-phase grid voltage (c)The q-axis negative sequence component of the three-phase grid voltage (d)The three-phase grid voltage after the negative sequence component is separated"
Figure 15.
The negative sequence component extraction based on ISDFT in the case of a sudden change in the frequency of the grid voltage. (a)Three-phase grid voltage with sudden frequency change (b)The d-axis negative sequence component of the three-phase grid voltage (c)The q-axis negative sequence component of the three-phase grid voltage (d)The three-phase grid voltage after the negative sequence component is separated"
Figure 16.
The negative sequence component extraction based on ISDFT in the case of three-phase load sudden changes (a)Three-phase grid voltage with sudden change of three-phase load (b)The d-axis negative sequence component of the three-phase grid voltage (c)The q-axis negative sequence component of the three-phase grid voltage (d)The three-phase grid voltage after the negative sequence component is separated"
[1] |
Guo X Q, Liu W Z, Liu Z G. Flexible power regulation and current limited control of the grid-connected inverter under unbalanced grid voltage faults[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9):7425-7432.
doi: 10.1109/TIE.2017.2669018 |
[2] | 何安然, 侯凯, 王小红, 等. 不对称条件下的储能虚拟同步发电机低电压穿越控制技术[J]. 电力系统自动化, 2018, 42(10):122-127. |
He Anran, Hou Kai, Wang Xiaohong, et al. A low voltage ride through control technique for energy storage virtual synchronous generator under asymmetric condition[J]. Automation of Electric Power Systems, 2018, 42(10):122-127. | |
[3] | 段铁, 黄焱, 汪洋. 载波同步中数字锁相环的重构设计[J]. 电子科技, 2019, 32(8):41-45. |
Duan Tie, Huang Yan, Wang Yang. Reconfiguration design of digital phase-locked loop in carrier synchronization[J]. Electronic Science and Technology, 2019, 32(8):41-45. | |
[4] |
He X, Geng H, Ma S. Transient stability analysis of grid-tied converters considering PLL’s nonlinearity[J]. CPSS Transactions on Power Electronic Application, 2019, 4(1):40-49.
doi: 10.24295/CPSSTPEA.2019.00005 |
[5] |
Haider S, Li G, Wang K. A dual control strategy for power sharing improvement in islanded mode of AC microgrid[J]. Protection and Control of Modern Power Systems, 2018, 3(1):1-10.
doi: 10.1186/s41601-017-0075-8 |
[6] |
Golestan S, Guerrero J M, Vidal A, et al. Small-signal modeling stability analysis and design optimization of single-phase delay-based PLLs[J]. IEEE Transactions on Power Electronics, 2015, 31(5):3517-3527.
doi: 10.1109/TPEL.2015.2462082 |
[7] |
Golestan S, Guerrero J M, Vasquez J C. Three-phase PLLs: A review of recent advances[J]. IEEE Transactions on Power Electronics, 2017, 32(3):1894-1907.
doi: 10.1109/TPEL.2016.2565642 |
[8] |
Xie M X, Wen H Q, Zhu C Y, et al. A method to improve the transient response of dq-frame cascaded delayed-signal-cancellation PLL[J]. Electric Power Systems Research, 2018, 155(2):121-130.
doi: 10.1016/j.epsr.2017.10.004 |
[9] |
Wang J Y, Liang J, Gao F, et al. A method to improve the dynamic performance of moving average filter-based PLL[J]. IEEE Transactions on Power Electronics, 2015, 30(10):5978-5990.
doi: 10.1109/TPEL.2014.2381673 |
[10] | 赵蕾, 石磊, 朱从莹, 等. 可自适应调节带宽的新型非线性二阶锁相环[J]. 电子科技, 2019, 32(1):1-4. |
Zhao Lei, Shi Lei, Zhu Congying, et al. A novel second order phase locked loop with adaptive adjusted bandwidth[J]. Electronic Science and Technology, 2019, 32(1):1-4. | |
[11] |
Khazraj H, Da Silva F F, Bak C L, et al. Analysis and design of notch filter-based PLLs for grid-connected applications[J]. Electric Power Systems Research, 2017, 147(1):62-69.
doi: 10.1016/j.epsr.2017.02.009 |
[12] |
Hamed H A, Abdou A F, Bayoumi E H E, et al. Frequency adaptive CDSC-PLL using axis drift control under adverse grid condition[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4):2671-2682.
doi: 10.1109/TIE.2016.2633524 |
[13] |
Golestan S, Guerrero J M, Vasquez J C. Hybrid adaptive /nonadaptive delayed signal cancellation-based phase-locked loop[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1):470-479.
doi: 10.1109/TIE.2016.2596713 |
[14] |
Han Y, Luo M Y, Chen C Q, et al. Performance evaluations of four MAF-based PLL algorithms for grid-synchronization of three-phase grid-connected PWM inverters and DGs[J]. Journal of Power Electronics, 2016, 16(5):1904-1917.
doi: 10.6113/JPE.2016.16.5.1904 |
[15] |
Golestan S, Guerrero J M, Vidal A, et al. PLL with MAF-based prefiltering stage:small-signal modeling and performance enhancement[J]. IEEE Transactions on Power Electronics, 2016, 31(6):4013-4019.
doi: 10.1109/TPEL.2015.2508882 |
[16] | Golestan S, Guerrero J M, Abusorrah A M. MAF-PLL with phase-lead compensator[J]. IEEE Transactions on Industrial Electronics, 2015, 26(6):3691-3695. |
[17] |
Ramezani M, Golestan S, Li S H, et al. A simple approach to enhance the performance of complex-coefficient filter-based PLL in grid-connected applications[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6):5081-5085.
doi: 10.1109/TIE.2017.2772164 |
[18] | 王德玉, 刘文钊, 郭小强, 等. 非理想电网电压情况下并网变换器高阶解耦复数滤波并网同步技术[J]. 中国电机工程学报, 2015, 35(10):2576-2583. |
Wang Deyu, Liu Wenzhao, Guo Xiaoqiang, et al. Grid synchronization technique with high-order decoupled complex filters for grid-connected converters under non-ideal grid voltages[J]. Proceedingss of the CSEE, 2015, 35(10):2576-2583. | |
[19] |
Luo Z X, Su M, Sun Y, et al. Stability analysis and concept extension of harmonic decoupling network for the three-phase grid synchronization systems[J]. International Journal of Electric Power and Energy System, 2017, 89(11):1-10.
doi: 10.1016/j.ijepes.2017.01.003 |
[20] | 梁雪维. 基于有源滤波器控制的微电网谐波抑制研究[D]. 沈阳:沈阳工业大学, 2019. |
Liang Xuewei. Study on harmonic suppression in microgrid based on active power filter control[D]. Shenyang:Shenyang University of Technology, 2019. | |
[21] | 刘桂英, 粟时平. 利用小波傅里叶变换的谐波与间谐波检测[J]. 高电压技术, 2007(6):184-188. |
Liu Guiying, Su Shiping. Measurement of harmonic and inter-harmonic using transform of wavelet and Fourier[J]. High Voltage Engineering, 2007(6):184-188. | |
[22] | 丁洪发, 段献忠, 何仰赞. 同步检测法的改进及其在三相不对称无功补偿中的应用[J]. 中国电机工程学报, 2000(6):17-20. |
Ding Hongfa, Duan Xianzhong, He Yangzan. Improvement of synchronous detection method and application for var compensation of unbalanced three-phase system[J]. Proceedingss of the CSEE, 2000(6):17-20. | |
[23] | 童立青, 钱照明, 彭方正. 同步旋转坐标谐波检测法的数学建模及数字实现[J]. 中国电机工程学报, 2009, 29(19):111-117. |
Tong Liqing, Qian Zhaoming, Peng Fangzheng. Synchronous reference frame harmonic detection modeling and digital realization[J]. Proceedings of the CSEE, 2009, 29(19):111-117. |
[1] | WANG Yumei,LIU Jingyan,LI Ziqiang. Evaluation Method of Coal Mine Power Quality Based on Improved Entropy Weight Method [J]. Electronic Science and Technology, 2021, 34(7): 31-36. |
[2] | GUO Feng, WANG Gang, DONG Xiao-Jie. Power Quality Transient Signal Detection Based on Wavelet Transform [J]. , 2012, 25(8): 59-. |
[3] | QIN Yin-Shan, ZHANG Guo-Wen, LV Yu-Xiang, ZHAO Qing-Sheng. Power Quality Monitor and Data Storage System Based on CAN Bus [J]. , 2011, 24(7): 68-. |
[4] | WU Hai-Qiang, LING Yu-Hua. A Power System Multi-Channel Synchronous Sampling Based on DSP and High-Speed ADC [J]. , 2011, 24(4): 75-. |
|