Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (6): 54-63.doi: 10.16180/j.cnki.issn1007-7820.2022.06.009
Previous Articles Next Articles
HUANG Yuansheng,JIANG Yuqing,WANG Jing
Received:
2021-01-17
Online:
2022-06-15
Published:
2022-06-20
Supported by:
CLC Number:
HUANG Yuansheng,JIANG Yuqing,WANG Jing. Research on Adaptability Evaluation of Distribution Network Based on Improved TOPSIS-PSO-SVM[J].Electronic Science and Technology, 2022, 35(6): 54-63.
Table 2.
Evaluation index system weight"
序号 | AHP权重 | EM权重 | 组合权重 |
---|---|---|---|
A1 | 0.160 700 | 0.000 029 | 0.000 096 |
A2 | 0.160 700 | 0.000 110 | 0.000 366 |
B1 | 0.078 400 | 0.077 346 | 0.125 354 |
B2 | 0.039 200 | 0.111 579 | 0.090 418 |
B3 | 0.039 200 | 0.077 155 | 0.062 522 |
C1 | 0.079 200 | 0.000 036 | 0.000 060 |
C2 | 0.039 600 | 0.107 523 | 0.088 020 |
D1 | 0.103 600 | 0.065 611 | 0.140 515 |
D2 | 0.037 400 | 0.093 454 | 0.072 253 |
D3 | 0.058 000 | 0.100 939 | 0.121 025 |
D4 | 0.063 000 | 0.138 452 | 0.180 313 |
D5 | 0.024 100 | 0.138 452 | 0.068 977 |
E1 | 0.047 300 | 0.000 883 | 0.000 863 |
E2 | 0.015 800 | 0.000 581 | 0.000 190 |
F1 | 0.036 100 | 0.043 669 | 0.032 589 |
F2 | 0.018 000 | 0.044 180 | 0.016 439 |
Table 3.
Training results of the improved PSO-SVM evaluation model"
样本序号 | 期望输出值 | 模型训练输出 | 相对误差 |
---|---|---|---|
1 | 0.435 6 | 0.429 9 | -1.307% |
2 | 0.515 4 | 0.521 1 | 1.114% |
3 | 0.713 5 | 0.719 2 | 0.802% |
4 | 0.342 9 | 0.348 5 | 1.608% |
5 | 0.565 9 | 0.560 3 | -0.985% |
6 | 0.391 0 | 0.392 0 | -0.255% |
7 | 0.583 1 | 0.588 9 | 0.996% |
8 | 0.745 4 | 0.741 4 | -0.534% |
9 | 0.199 0 | 0.193 5 | -2.780% |
10 | 0.610 8 | 0.599 1 | -1.917% |
11 | 0.457 4 | 0.462 7 | 1.154% |
12 | 0.561 9 | 0.563 2 | 0.221% |
13 | 0.519 3 | 0.539 9 | 3.975% |
14 | 0.568 9 | 0.563 4 | -0.971% |
15 | 0.518 7 | 0.524 2 | 1.047% |
16 | 0.397 4 | 0.402 7 | 1.336% |
17 | 0.429 8 | 0.424 2 | -1.293% |
18 | 0.499 9 | 0.503 5 | 0.710% |
19 | 0.649 7 | 0.655 2 | 0.848% |
20 | 0.640 8 | 0.637 7 | -0.479% |
相对误差绝对值平均数 | 1.217% |
Table 5.
Test results of PSO-SVM and SVM evaluation models"
样本序号 | 期望值 | PSO-SVM 评价 测试值 | PSO-SVM 相对 误差 | SVM 评价 测试值 | SVM相 对误差 |
---|---|---|---|---|---|
1 | 0.391 1 | 0.403 7 | 3.22% | 0.413 2 | 5.66% |
2 | 0.430 9 | 0.446 0 | 3.51% | 0.455 5 | 5.71% |
3 | 0.506 7 | 0.519 9 | 2.61% | 0.486 2 | -4.04% |
4 | 0.705 1 | 0.680 2 | -3.54% | 0.689 7 | -2.19% |
5 | 0.642 9 | 0.620 3 | -3.51% | 0.601 0 | -6.51% |
相对误差绝对值平均数 | 3.28% | 4.82% |
[1] | 田鑫, 张健, 李雪亮, 等. 基于时序运行模拟的山东电网光伏发电消纳能力评估[J]. 电力系统保护与控制, 2020, 48(8):34-43. |
Tian Xin, Zhang Jian, Li Xueliang, et al. Evaluation photovoltaic accommodation ability for the Shandong power system based on sequential operation simulation[J]. Power System Protection and Control, 2020, 48(8):34-43. | |
[2] | 甘磊. 考虑大型新能源发电基地接入的大电网规划方法研究[D]. 北京: 华北电力大学, 2017. |
Gan Lei. Research on planning method of bulk power network integrated with large-scale new energy power bases[D]. Beijing: North China Electric Power University, 2017. | |
[3] | 国宗. 含新能源发电的配电网供电能力研究[D]. 上海: 上海电力学院, 2015. |
Guo Zong. Study on power supply capacity of distribution network containing distributed generation[D]. Shanghai: Shanghai University of Electric Power, 2015. | |
[4] | 黄湛华. 基于供电可靠性的配电网规划实践[J]. 供用电, 2017, 34(3):42-46. |
Huang Zhanhua. Distribution network planning practice based on power supply reliability[J]. Distribution and Utilization, 2017, 34(3):42-46. | |
[5] | 钱科军, 袁越, Zhou Chengke. 分布式发电对配电网可靠性的影响研究[J]. 电网技术, 2008, 32(11):74-78. |
Qian Kejun, Yuan Yue, Zhou Chengke. Study on impact of distributed generation on distribution system reliability[J]. Power System Technology, 2008, 32(11):74-78. | |
[6] | 张嘉堃. 含分布式电源的配电网供电能力研究[D]. 上海: 上海电力学院, 2016. |
Zhang Jiakun. Study on power supply capacity of distribution network including distributed generation[D]. Shanghai: Shanghai University of Electric Power, 2016. | |
[7] | 张伟. 含分布式电源的配电网供电能力评估[D]. 呼和浩特: 内蒙古工业大学, 2018. |
Zhang Wei. Evaluation of power supply capability for distribution network with distributed generation[D]. Hohhot: Inner Mongolia University of Technology, 2018. | |
[8] | 李刚, 张巍, 奚培锋. 考虑经济安全性的有源配电网供电能力研究[J]. 电力科学与工程, 2020, 36(2):7-12. |
Li Gang, Zhang Wei, Xi Peifeng. Study on power supply capability of active distribution network considering economic security[J]. Electric Power Science and Engineering, 2020, 36(2):7-12. | |
[9] | 王丽娜. 智能配电网规划经济性综合评价研究[J]. 电力学报, 2017, 32(5):414-420. |
Wang Lina. Study on comprehensive evaluation of smart distribution network economy[J]. Journal of Electric Power, 2017, 32(5):414-420. | |
[10] | 姜楠, 王琦, 王恩荣, 等. 分布式光伏电源接入对配电网可靠性的影响研究[J]. 南京师范大学学报(工程技术版), 2016, 16(2):1-9. |
Jiang Nan, Wang Qi, Wang Enrong, et al. Research on influence of the distributed photovoltaic supply on distributed network reliability[J]. Journal of Nanjing Normal University(Engineering and Technology Edition), 2016, 16(2):1-9. | |
[11] | 袁修广. 配电网可靠性与风险性评估方法的研究[D]. 长沙: 湖南大学, 2015. |
Yuan Xiuguang. Research on reliability and risk evaluation methods of distribution network[D]. Changsha: Hunan University, 2015. | |
[12] | 赵学会, 梁骏, 王克峰. 供电安全标准在配电网网格化规划设计中的应用研究[J]. 能源研究与利用, 2019(1):36-39. |
Zhao Xuehui, Liang Jun, Wang Kefeng. Application research of power supply safety standard in grid planning and design of distribution network[J]. Energy Research and Utilization, 2019(1):36-39. | |
[13] | 陶鹏, 张焰, 邱生. 基于GIS的配电网供电可靠性定量评估系统研究[J]. 电力系统保护与控制, 2006, 34(13):67-71. |
Tao Peng, Zhang Yan, Qiu Sheng. Research on quantitative assessment system for distribution network reliability based on GIS[J]. Power System Protection and Control, 2006, 34(13):67-71. | |
[14] | 方欢欢. 智能配电网经济性评估方法研究[D]. 上海: 上海交通大学, 2012. |
Fang Huanhuan. Research on economic evaluation method of smart distribution network[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
[15] | 陈强, 刘瑾, 杨海马, 等. 基于改进遗传算法的配电网无功优化研究[J]. 电子科技, 2019, 32(5):11-15. |
Chen Qiang, Liu Jin, Yang Haima, et al. Research on reactive power optimization of distribution network based on improved genetic algorithm[J]. Electronic Science and Technology, 2019, 32(5):11-15. | |
[16] | 南钰, 宋瑞卿, 陈鹏, 等. 基于改进熵权-灰色关联法的配电网可靠性影响因素分析[J]. 电力系统保护与控制, 2019, 47(24):101-107. |
Nan Yu, Song Ruiqing, Chen Peng, et al. Study on the factors the reliability analysis in distribution network based on improved entropy weight gray correlation analysis algorithm[J]. Power System Protection and Control, 2019, 47(24):101-107. | |
[17] | 何英静, 李帆, 沈舒仪, 等. 新能源及分布式电源接入浙江配电网适应性研究[J]. 浙江电力, 2018, 37(1):32-36. |
He Yingjing, Li Fan, Shen Shuyi, et al. Adaptability research on integration of new energy and distributed generation into Zhejiang distribution network[J]. Zhejiang Electric Power, 2018, 37(1):32-36. | |
[18] | 王伟华. 新能源分布式电源大量接入吐鲁番配电网适应性研究[D]. 北京: 华北电力大学, 2018. |
Wang Weihua. Study on the adaptability of new energy and distributed power supply to Turpan distribution network[D]. Beijing: North China Electric Power University, 2018. | |
[19] | 谭家茂, 黄少先. 基于模糊理论的电能质量综合评价方法研究[J]. 电力系统保护与控制, 2006, 34(3):55-59. |
Tan Jiamao, Huang Shaoxian. Research on synthetic evaluation method of power quality based on fuzzy theory[J]. Power System Protection and Control, 2006, 34(3):55-59. | |
[20] | 邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7):93-100. |
Deng Xue, Li Jiaming, Zeng Haojian, et al. Research on computation methods of AHP wight vector and its applications[J]. Mathematics in Practice and Theory, 2012, 42(7):93-100. | |
[21] | 郭金玉, 张忠彬, 孙庆云. 层次分析法的研究与应用[J]. 中国安全科学学报, 2008, 18(5):148-153. |
Guo Jinyu, Zhang Zhongbin, Sun Qingyun. Research and application of analytic hierarchy process[J]. China Safety Science Journal, 2008, 18(5):148-153 | |
[22] | 肖枝洪, 王一超. 关于“评测指标权重确定的结构熵权法”的注记[J]. 运筹与管理, 2020, 29(6):145-149. |
Xiao Zhihong, Wang Yichao. Notes on structure entropy weight method to confirm the weight of evaluating index[J]. Operations Research and Management Science, 2020, 29(6):145-149. | |
[23] | 周志恒, 陈玲玲, 吕雅琪, 等. 基于熵权法对幸福感的模糊综合评价[J]. 电子科技, 2012, 25(11):18-20. |
Zhou Zhiheng, Chen Lingling, Lü Yaqi, et al. Fuzzy synthetic evaluation of the sense of happiness based on the entropy weight method[J]. Electronic Science and Technology, 2012, 25(11):18-20. | |
[24] | 王艳, 周航, 丁松滨. 基于TOPSIS的客舱布局选项评估要素分析方法[J]. 电子科技, 2015, 28(9):23-26. |
Wang Yan, Zhou Hang, Ding Songbin. Assessment of cabin layout options based on TOPSIS[J]. Electronic Science and Technology, 2015, 28(9):23-26. | |
[25] | 周亚. 多属性决策中的TOPSIS法研究[D]. 武汉: 武汉理工大学, 2009. |
Zhou Ya. The Study of TOPSIS method in multiple attribute decision making[D]. Wuhan: Wuhan University of Technology, 2009. | |
[26] | 刘树林. 多属性决策理论方法与应用研究[D]. 北京: 北京航空航天大学, 1997. |
Liu Shulin. Multi-attribute decision making:theories methods, and their applications[D]. Beijing: Beijing University of Aeronautics and Astronautics, 1997. | |
[27] | 房乐楠, 何腾鹏, 刘宇红. 一种改进型PSO算法在SVM参数寻优中的应用[J]. 电子科技, 2018, 31(6):17-19. |
Fang Lenan, He Tengpeng, Liu Yuhong. Application of an improved PSO algorithm in SVM parameter optimization[J]. Electronic Science and Technology, 2018, 31(6):17-19. | |
[28] | 陈潇雅, 刘志坚, 刘晓欣, 等. 基于长期负荷预测和联络分析的配电网规划[J]. 广东电力, 2019, 32(3):59-65. |
Chen Xiaoya, Liu Zhijian, Liu Xiaoxin, et al. Distribution network planning based on long-term load forecasting and tie-line analysis[J]. Guangdong Electric Power, 2019, 32(3):59-65. | |
[29] |
Wang J G, Zhang Z J, Zhang W X. Support vector machine based on double-population particle swarm optimization[J]. Journal of Convergence Information Technology, 2013, 8(8):898-905.
doi: 10.4156/jcit.vol8.issue8.106 |
[30] | 赵倩, 陈芳芳, 甘露. 基于改进粒子群算法优化支持向量机的风电功率预测[J]. 电气技术, 2020, 21(12):12-16. |
Zhao Qian, Chen Fangfang, Gan Lu. Wind power prediction based on support vector machine trained by improved particle swarm optimization[J]. Electrical Technology, 2020, 21(12):12-16. | |
[31] | 黄洋, 鲁海燕, 许凯波, 等. 一种动态调整惯性权重的简化均值粒子群优化算法[J]. 小型微型计算机系统, 2018, 39(12):2590-2595. |
Huang Yang, Lu Haiyan, Xu Kaibo, et al. Simplified mean particle swarm optimization algorithm for dynamic adjustment of inertia weight[J]. Journal of Chinese Computer Systems, 2018, 39(12):2590-2595. |
|