[1] |
孟繁顺. 浅谈铁路钢轨断裂的原因及预防措施[J]. 铁道建筑技术, 2011(10):58-62.
|
|
Meng Fanshun. Thereasons and preventive measures of railway rail fracture are briefly discussed[J]. Railway Construction Technology, 2011(10):58-62.
|
[2] |
Utrata D, Clark R. Groundwork for rail flaw detection using ultras onic phased array inspection[J]. Review of Progress in Quatitative Nondestructive Evaluation, 2003,657(2):799-805.
|
[3] |
Papaelias M P, Lugg M C, Roberts C, et al. High-speed inspection of rails using ACFM techniques[J]. NDT&E International, 2009,42(4):328-335.
doi: 10.1016/j.ndteint.2008.12.008
|
[4] |
王时丽, 刘桂华. 基于机器视觉的钢轨表面缺陷三维检测[J]. 微型机与应用, 2015,34(19):10-13.
|
|
Wang Shili, Liu Guihua. 3D defect detection of rail surface based on machine vision[J]. Microcomputer and Applications, 2015,34(19):10-13.
|
[5] |
汪路明, 金合丽, 周煊勇, 等. 基于机器视觉和脉冲涡流复合的在线钢轨表面缺陷检测系统设计[J]. 浙江树人大学学报(自然科学版), 2018(1):7-11.
|
|
Wang Luming, Jin Heli, Zhou Xuanyong, et al. Design of on-line rail surface defect detection system based on machine vision and pulsed eddy current[J]. Journal of Zhejiang Shuren University(Natural Science Edition), 2018(1):7-11.
|
[6] |
王智. 基于BP网络的钢轨缺陷信号实验分析[J]. 电子制作, 2013(10):31-32.
|
|
Wang Zhi. Experimental analysis of rail defect signal based on BP network[J]. Electronic Manufacture, 2013(10):31-32.
|
[7] |
冉建民. 基于图像和CNN模型的钢轨表面缺陷识别研究[D]. 兰州:兰州交通大学, 2018.
|
|
Ran Jianmin. Research on rail surface defect recognition based on image and CNN model[D]. Lanzhou:Lanzhou Jiaotong University, 2018.
|
[8] |
任俊箫. 基于图像处理的铁轨表面缺陷检测设计[D]. 绵阳:西南科技大学, 2017.
|
|
Ren Junxiao. Design of rail surface defect detection based on image processing[D]. Mianyang: Southwest University of Science and Technology, 2017.
|
[9] |
林萌, 李翠华, 黄剑航. 基于Radon变换的运动模糊图像参数估计[J]. 计算机技术与发展, 2008,18(1):33-36.
|
|
Lin Meng, Li Cuihua, Huang Jianhang. Parameter estimation of motion blur image based on Radon transform[J]. Computer Technology and Development, 2008,18(1):33-36.
|
[10] |
Gael R, Jean-Baptiste B, Gerard B, et al. Reflective imaging solved by the Radontranform[J]. IEEE Geoscience & Remote Sensing Letters, 2016,13(7):936-938.
|
[11] |
Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,38(1):1-8.
doi: 10.1109/tpami.2015.2439257
pmid: 27030844
|
[12] |
Girshick R. Fast R-CNN[C]. Boston:IEEE International Conference on Computer Vision(ICCV), 2015.
|
[13] |
刘雄祥. 基于卷积神经网络的铁轨表面缺陷识别研究[D]. 绵阳:西南科技大学, 2018.
|
|
Liu Xiongxiang. Research on track surface defect recognition based on convolutional neural network[D]. Mianyang:Southwest University of Science and Technology, 2018.
|
[14] |
Shaoqing R, Kaiming H, Ross G, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(3):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
|
[15] |
张汇, 杜煜, 宁淑荣, 等. 基于Faster RCNN的行人检测方法[J]. 传感器与微系统, 2019,38(2):147-149,153.
|
|
Zhang Hui, Du Li, Ning Shurong, et al. Pedestrian detection method based on faster RCNN[J]. Sensors and Microsystems, 2019,38(2):147-149,153.
|
[16] |
刘蕴辉, 刘铁, 王权良, 等. 基于图像处理的铁轨表面缺陷检测算法[J]. 计算机工程, 2007(11):236-238.
|
|
Liu Yunhui, Liu Tie, Wang Quanliang, et al. Image processing based on the track surface defect detection algorithm[J]. Computer Engineering, 2007(11):236-238.
|