Electronic Science and Technology ›› 2021, Vol. 34 ›› Issue (8): 19-24.doi: 10.16180/j.cnki.issn1007-7820.2021.08.004
Previous Articles Next Articles
SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong
Received:
2020-03-23
Online:
2021-08-15
Published:
2021-08-17
Supported by:
CLC Number:
SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong. Fundus Blood Vessel Image Segmentation Combining Resnet50 and U-Net[J].Electronic Science and Technology, 2021, 34(8): 19-24.
Table 1
Comparison of performance data between different documents"
算法来源 | 年份 | 灵敏度 | 特异性 | 准确率 |
---|---|---|---|---|
文献[ | 2014 | 0.725 2 | 0.979 8 | 0.947 4 |
文献[ | 2016 | 0.756 9 | 0.981 6 | 0.952 7 |
文献[ | 2016 | 0.773 1 | 0.972 4 | 0.946 7 |
文献[ | 2016 | 0.766 3 | 0.976 8 | 0.949 5 |
文献[ | 2017 | 0.789 7 | 0.968 4 | - |
文献[ | 2018 | 0.806 3 | 0.977 8 | 0.955 6 |
文献[ | 2018 | 0.780 2 | 0.987 6 | 0.963 6 |
本文算法 | 2020 | 0.812 0 | 0.989 2 | 0.967 6 |
[1] | 张亮军, 承垠林, 马梦楠, 等. 基于Dense U-Net方法的眼底彩色照片图像血管分割研究[J]. 生物医学工程研究, 2019,38(4):397-402. |
Zhang Liangjun, Cheng Yinlin, Ma Mengnan, et al. Research oncolor fundus image blood vessel segmentation based on Dense U-Net[J]. Journal of Biomedical Engineering Research, 2019,38(4):397-402. | |
[2] | 梁礼明, 黄朝林, 石霏, 等. 融合形状先验的水平集眼底图像血管分割[J]. 计算机学报, 2018,41(7):1678-1692. |
Liang Liming, Huang Chaolin, Shi Fei, et al. Fusion of shape priori level set for fundus image vascular segmentation[J]. Journal of Computer Science, 2018,41(7):1678-1692. | |
[3] | Li Q, You J, Zhang D. Vessel segmentation and width estimation in retinal images ussing multi- scale production of matched filter responses[J]. Expert Systems with Appl- ications, 2012,39(9):7600-7610. |
[4] | Fraz M M, Barman S A, Remagnino P, et al. An approach to localize the retinal blood vessels using bit planes and centerline detection[J]. Computer Methods and Programs in Biomedicine, 2012,108(2):600-616. |
[5] | 贝琛圆, 于海滨, 潘勉, 等. 基于改进U-Net网络的腺体细胞图像分割算法[J]. 电子科技, 2019,32(11):18-22. |
Bei Chenyuan, Yu Haibin, Pan Mian, et al. Gland cell image segmentation algorithm based on improved U-Net network[J]. Electronic Science and Technology, 2019,32(11):18-22. | |
[6] | Orlando J I, Prokofyeva E, Blaschko M B. A discri-minatively trained fully connected conditional rand field model for blood vessel Segmentation in fundus images[J]. IEEE Trans on Biomedical Engineering, 2016,64(1):16-27. |
[7] | Staal J, Abramoff M D, Niemeijer M, et al. Ridgebased vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004,23(4):501-509. |
[8] | 朱承璋, 邹北骥, 向遥, 等. 彩色眼底图像视网膜血管分割方法研究进展[J]. 计算机辅助设计与图形学学报, 2015,27(11):2046-2057. |
Zhu Chengzhang, Zou Beiji, Xiang Yao, et al. A survey of retinal vessel segmentation in fundus images[J]. Journal of Computer-Aided Design & Computer Graphics, 2015,27(11):2046-2057. | |
[9] | 储清翠, 王华彬, 陶亮. 图像的局部自适应 Gamma校正[J]. 计算机工程与应用, 2015,51(7):189-193. |
Chu Qingcui, Wang Huabin, Tao Liang. Local adaptive Gamma correction of images[J]. Computer Engineering and Applications, 2015,51(7):189-193. | |
[10] | 张利欣, 车世界, 徐正光, 等. 基于残差网络的高温合金微观组织图像分割方法[J]. 科学技术与工程, 2020,20(1):246-251. |
Zhang Lixin, Che Shijie, Xu Zhengguang, et al. Microstructure image segmentation of superalloy based on resnunet[J]. Science Technology and Engineering , 2020,20(1):246-251. | |
[11] | 梁礼明, 盛校棋, 郭凯, 等. 基于改进的U-Net眼底视网膜血管分割[J]. 计算机应用研究, 2020,37(4):1247-1251. |
Liang Liming, Sheng Xiaoqi, Guo Kai, et al. Improved U-Net fundus retinal vessels segmentation[J]. Application Research of Computers, 2020,37(4):1247-1251. | |
[12] | Roychowdhury S, Koozekanani D D, Parhi K K. Blood vessel segmentation of fundus images by major vessel extraction and subimage classification[J]. IEEE Journal of Biomed Health Information, 2017,19(3):1118-1128 |
[13] | 王婷, 李航, 胡智. 一种VGG Net的图像风格迁移算法设计与实现[J]. 计算机应用与软件, 2019,36(11):224-228. |
Wang Ting, Li Hang, Hu Zhi. Design and implementatio n of image style migration algorithm based on VGG Net[J]. Computer Applications and Softwar, 2019,36(11):224-228. | |
[14] | Cheng E, Du L, Wu Y, et al. Discriminative vessel segmentation in retinal images by fusing contextaware hybrid features[J]. Machine Vision an Applications, 2014,25(7):1779-1792. |
[15] | Li Q L, Feng B, Xie L P, et al. A cross-modality learning approach for vessel segmentation in retinal images[J]. IEEE Transactions on Medical Imaging, 2016,35(1):109-118. |
[16] | Strisciuglio N, Azzopardi G, Vento M, et al. Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters[J]. Machine Vision & Applications, 2016,27(8):1137-1149. |
[17] | Liskowski P, Krzysztof K. Segmenting retinal blood vesselswith deep neural networks[J]. IEEE Transactions on Medical Imaging, 2016,35(11):2369-2380. |
[18] | 吴晨玥, 易本顺, 章云港, 等. 基于改进卷积神经网络的视网膜血管图像分割[J]. 光学学报, 2018,38(11):133-139. |
Wu Chenyu, Yi Benshun, Zhang Yungang, et al. Retinal vascular image segmentation based on improved convolution neural network[J]. Journal of Optics, 2018,38(11):133-139. | |
[19] | Gao X R, Cai Y H, Qiu C Y, et al. Retinal blood vessel segmentation based on the Gaussian matched filter and U-net[C]. Shanghai:The Tenth International Congress on Image and Signal Processing,Biomedical Engineering and Informatics, 2017. |
[1] | WU Weijia,YANG Jian,YUAN Tianchen,SHAO Zhihui. Research on Track Structure Damage Identification Based on Support Vector Machine [J]. Electronic Science and Technology, 2022, 35(2): 27-33. |
[2] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[3] | SHAO Zhihui,YANG Jian,YUAN Tianchen,WU Weijia. Sleeper Diseases Diagnosis Based on Permutation Entropy and Support Vector Machine [J]. Electronic Science and Technology, 2022, 35(2): 52-58. |
[4] | CHU Ping,NI Wei. Design of FPGA-Based SqueezeNet Inference Accelerator [J]. Electronic Science and Technology, 2022, 35(2): 20-26. |
[5] | LU Wei,LIU Xiang,XUE Mian. Siamese Network Binocular Stereo Matching Based on Super-Pixel Segmentation [J]. Electronic Science and Technology, 2021, 34(9): 73-78. |
[6] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[7] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[8] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
[9] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[10] | MENG Xiaojiao,ZHANG Shiwei,LI Xiaojian,LI Minyue,SONG Bingxin,LU Hongmin. An Evaluation Method of Vehicle-Mounted Communication Equipment Performance Based on BP Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 24-28. |
[11] | ZHANG Shisen,SUN Xiankun,YIN Ling,LI Shixi. Design of Text Title Generation Prototype System Based on Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 35-41. |
[12] | LIU Shu,SHAO Jie,ZHANG Yiting,ZHANG Shanzhang. ECG Classification Based on Bispectrum and Spectral Features [J]. Electronic Science and Technology, 2021, 34(5): 42-46. |
[13] | SONG Zhangming,HE Huiyong,HUANG Yuejun. Study on On-Line Detection of Surface Defects of Flat Enameled Wire [J]. Electronic Science and Technology, 2021, 34(5): 72-78. |
[14] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[15] | DOU Zhengli,WANG Yagang. Modeling of Combustion Chamber Temperature Model of Combined Cycle Unit Based on Elman Neural Network [J]. Electronic Science and Technology, 2021, 34(3): 60-64. |