[1] |
Jin Y, Dou Q, Chen H, et al. SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network[J]. IEEE Transactions on Medical Imaging, 2017,37(5):1114-1126.
|
[2] |
Yang H, Park M, Cho M, et al. A system architecture for manufacturing process analysis based on big data and process mining techniques[C]. Santa Clara:IEEE International Conference on Big Data, 2015.
|
[3] |
袁小平, 王岗, 王晔枫, 等. 基于改进卷积神经网络的交通标志识别方法[J]. 电子科技, 2019,32(11):28-32.
|
|
Yuan Xiaoping, Wang Gang, Wang Yefeng, et al. Traffic sign recognition method based on improved convolutional neural network[J]. Electronic Science and Technology, 2019,32(11):28-32.
|
[4] |
周文凯, 韩芳, 孔维健. 基于Faster-RCNN的极验点选式验证码识别[J]. 电子科技, 2019,32(9):42-45,59.
|
|
Zhou Wenkai, Han Fang, Kong Weijian. Point-selective geetest CAPTCHA recognition based on Faster-RCNN[J]. Electronic Science and Technology, 2019,32(9):42-45,59.
|
[5] |
胡海洋, 丁佳民, 胡华, 等. 基于三维卷积神经网络的工作流识别方法[J]. 计算机集成制造系统, 2018,24(7):1747-1757.
|
|
Hu Haiyang, Ding Jiamin, Hu Hua, et al. Workflow recognition method based on 3D convolutional neural networks[J]. Computer Integrated Manufacturing Systems, 2018,24(7):1747-1757.
|
[6] |
Slama R, Wannous H, Daoudi M, et al. Accurate 3D action recognition using learning on the Grassmann manifold[J]. Pattern Recognition, 2015,48(2):556-567.
|
[7] |
Xu H, Das A, Saenko K. R-C3D: Region convolutional 3d network for temporal activity detection[C]. Venice: The IEEE International Conference on Computer Vision, 2017.
|
[8] |
Hu H, Cheng K, Li Z, et al. Workflow recognition with structured two-stream convolutional networks[J]. Pattern Recognition Letters, 2020,130(2):267-274.
|
[9] |
Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos[C]. Montreal: Advances in Neural Information Processing Systems, 2014.
|
[10] |
Bodla N, Singh B, Chellappa R, et al. Soft-NMS--improving object detection with one line of code[C]. Venice: The IEEE International Conference on Computer Vision, 2017.
|
[11] |
Wang L, Xiong Y, Zhe W, et al. Temporal segment networks: towards good practices for deep action recognition[C]. Amsterdam:European Conference on Computer Vision, 2016.
|
[12] |
Hara K, Kataoka H, Satoh Y, et al. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet[C]. Salt Lake City:The IEEE Computer Vision and Pattern Recognition, 2018.
|
[13] |
Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. Santiago: IEEE International Conference on Computer Vision, 2015.
|
[14] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Nevada:The IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[15] |
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6):1137-1149.
|
[16] |
Neubeck A, Gool L. Efficient non-maximum suppression[C]. Hong Kong:The Eighteenth International Conference on Pattern Recognition, 2006.
|
[17] |
董海青, 林宝军, 刘迎春. 一种有效掏运动目标周围“空洞”的算法[J]. 电子设计工程, 2018,26(18):25-29.
|
|
Dong Haiqing, Lin Baojun, Liu Yingchun. An algorithm to effectively suppress "hole"around moring objects[J]. Electronic Design Engineering, 2018,26(18):25-29.
|