Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (4): 67-71.doi: 10.16180/j.cnki.issn1007-7820.2022.04.011
Previous Articles Next Articles
Xiaojing YANG,Hongxiu YANG
Received:
2020-11-24
Online:
2022-04-15
Published:
2022-04-15
Supported by:
CLC Number:
Xiaojing YANG,Hongxiu YANG. Simulation of Dynamic Process of Micro-Cutting Single Crystal Germanium Based on SPH Method[J].Electronic Science and Technology, 2022, 35(4): 67-71.
[1] | 李杰, 杨辉, 成超乾. 单晶锗超精密车削试验研究[C]. 南昌:航空装备服务保障与维修技术论坛暨中国航空工业技术装备工程协会年会, 2019. |
Li Jie, Yang Hui, Cheng Chaoqian. Experimental study onultra precision turning of single crystal germanium[C]. Nanchang:Aviation Equipment Service Support and Maintenance Technology Forum and Annual Meeting of China Aviation Industry Technical Equipment Engineering Association, 2019. | |
[2] | 张逸飞, 李珊, 杨晓京, 等. 含有空位缺陷的单晶锗纳米切削过程分子动力学仿真[J]. 电子科技, 2019, 32(12):53-57. |
Zhang Yifei, Li Shan, Yang Xiaojing, et al. Molecular dynamics simulation of single crystal germanium nano cutting process with vacancy defects[J]. Electronic Science and Technology, 2019, 32(12):53-57. | |
[3] | 杨晓京, 刘浩, 罗良, 等. 单晶锗微纳米尺度切削特性实验研究[J]. 中国有色金属学报, 2019, 29(7):1457-1465. |
Yang Xiaojing, Liu Hao, Luo Liang, et al. Experimental study on micro nano scale cutting characteristics of single crystal germanium[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7):1457-1465. | |
[4] | 刘浩. 单晶锗微纳米尺度塑性域切削特性研究[D]. 昆明:昆明理工大学, 2019. |
Liu Hao. Study on machining characteristics of single crystal germanium in plastic domain at micro and nano scales[D]. Kunming:Kunming University of Science and Technology, 2019. | |
[5] | 苗实, 史国权, 石广丰, 等. 单晶锗各向异性对加工表面粗糙度的影响[J]. 机械科学与技术, 2017, 36(1):89-94. |
Miao Shi, Shi Guoquan, Shi Guangfeng, et al. Effect of germanium single-crystal anisotropy on roughness of cutting surface[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(1):89-94. | |
[6] |
Liu N, Yang X J, Yu Z, et al. Indentation size effect of germanium single crystal with differentcrystal orientations[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1):181-190.
doi: 10.1016/S1003-6326(19)65190-3 |
[7] | Luo L, Yang X J. Molecular dynamics simulation and experimental study on nano cutting process of single crystal germanium[J]. Rare Metal Materials and Engineering, 2019, 48(12):3863-3869. |
[8] | Luo L, Yang X J. A molecular dynamics investigation on stress distribution into nanoscale cutting process of monocrystalline germanium[J]. Rare Metal Materials and Engineering, 2020, 49(4):1144-1150. |
[9] |
Sadek S H M, Belinha J, Parente M P L, et al. The analysis of composite laminated beams using a 2D interpolating meshless technique[J]. Acta Mechanica Sinica, 2018, 34(1):99-116.
doi: 10.1007/s10409-017-0701-8 |
[10] | 王睿. SPH-FEM耦合方法在切削加工数值模拟中的研究[J]. 合肥学院学报(综合版), 2017, 34(2):84-88. |
Wang Rui. Simulation research of cutting based on FEM and SPH[J]. Journal of Hefei University(Comprehensive Edition), 2017, 34(2):84-88. | |
[11] | 史宇同. 基于SPH方法的K9玻璃加工损伤及裂纹扩展研究[D]. 大连:大连理工大学, 2019. |
Shi Yutong. Study on the machining damage and crack propagation of K9 glass based on SPH method[D]. Dalian:Dalian University of Technology, 2019. | |
[12] | 倪正顺, 袁锦龙, 孙晓, 等. 基于SPH方法对多晶硅裂纹扩展的数值模拟[J]. 湖南工业大学学报, 2020, 34(3):39-48. |
Ni Zhengshun, Yuan Jinlong, Sun Xiao, et al. Numerical simulation of crack propagation in polycrystalline silicon based on SPH method[J]. Journal of Hunan University of Technology, 2020, 34(3):39-48. | |
[13] |
Duan N, Yu Y Q, Wang W S, et al. Analysis of grit interference mechanisms for the double scratching of monocrystalline silicon carbide by coupling the FEM and SPH[J]. International Journal of Machine Tools and Manufacture, 2017, 120(1):49-60.
doi: 10.1016/j.ijmachtools.2017.04.012 |
[14] |
Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
doi: 10.1016/0013-7944(85)90052-9 |
[15] |
Venkatachalam S, Li X, Liang S Y. Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials[J]. Journal of Materials Processing Technology, 2009, 209(7):3306-3319.
doi: 10.1016/j.jmatprotec.2008.07.036 |
[16] | 郑杨倩伦. 氧化锆陶瓷超精密飞刀加工仿真与试验研究[D]. 武汉:华中科技大学, 2018. |
Zheng Yangqianlun. The simulation and experimental research on ultra-precision flying cutting of zirconia ceramics[D]. Wuhan:Huazhong University of Science and Technology, 2018. | |
[17] | 朱可可. 单晶锗二维转鼓的加工工艺及检测方法研究[D]. 长春:长春理工大学, 2018. |
Zhu Keke. Research on the process technology and detection method of two-dimensional drum single crystal germanium[D]. Changchun:Changchun University of Science and Technology, 2018. | |
[18] | 赖敏. 单晶锗纳米切削机理和切削极限的研究[D]. 天津:天津大学, 2016. |
Lai Min. Study on nano-cutting mechanism of monocrystalline germanium[D]. Tianjin:Tianjin University, 2016. |
[1] | Xinge SHEN,Hai JIN,Liang GUO. Research on Adaptive Backstepping Control of Quadrotor UAV [J]. Electronic Science and Technology, 2022, 35(3): 32-37. |
[2] | Xuanfeng SHANGGUAN,Tingyu YANG,Jinsong WEI,Yongjian LIU. Design Analysis and Modeling Simulation of Brushless DC Motor [J]. Electronic Science and Technology, 2022, 35(3): 71-78. |
[3] | LIU Jianlong,HAO Zhenghang. Comparative Study of Wind Power System Simulation Based on Back-to-Back Converters [J]. Electronic Science and Technology, 2022, 35(2): 67-73. |
[4] | YUAN Xianpu,MIAO Xiaodan,YANG Jian,YUAN Tianchen,YUAN Ding. Aerodynamic Noise Analysis for High-Speed Train’s Pantograph and Study on Noise Reduction of the Cavity of Pantograph [J]. Electronic Science and Technology, 2022, 35(1): 45-52. |
[5] | CHEN Jiaming,WANG Lihua,SU Xiaohang. Research on Mechanical Characteristics of Railway Bridge Ballast Bed Based on ADAMS [J]. Electronic Science and Technology, 2022, 35(1): 53-59. |
[6] | WANG Yumei,ZHANG Zihan,WANG Hao. Large-Disturbance Stability Analysis of DC Microgrid Based on Mixed Potential Function [J]. Electronic Science and Technology, 2022, 35(1): 66-72. |
[7] | LI Gang. A Synthesis Method for Dual-Band Filters with Frequency Variant Couplings [J]. Electronic Science and Technology, 2022, 35(1): 1-5. |
[8] | NIU Shuaichen,WANG Fuzhong,HAN Yaofei,HE Guofeng,NIU Yeke. Control Strategy of Modular Multilevel Converter Under Unbalanced Grid Voltage [J]. Electronic Science and Technology, 2022, 35(1): 80-86. |
[9] | HAN Shifan,FU Dongxiang. Research on Optical Lens Reconstruction Algorithm Based on NURBS [J]. Electronic Science and Technology, 2021, 34(9): 24-29. |
[10] | WANG Yang,WANG Yagang. Identification Method Based on Step Response and Genetic Algorithm to Optimize Higher-Order Plus Time-Delay Model [J]. Electronic Science and Technology, 2021, 34(9): 41-46. |
[11] | LI Yudong,LIAN Haishan,HU Xiaodan. AC/AC Frequency Conversion Power Supply Based on Three-Phase Input [J]. Electronic Science and Technology, 2021, 34(9): 47-53. |
[12] | YAN Zhenbin,ZHENG Bochao,ZHOU Zhiyong. Research on Grid Connection of Photovoltaic Power Generation Systems Based on a New Robust Droop Control Method [J]. Electronic Science and Technology, 2021, 34(8): 79-86. |
[13] | TANG Shengnan,LÜ Yibin,WANG Yingzi,FANG Jinli,WU Dean. Hybrid Iteration Method for Number Conformal Mapping of Multi-Connected Domain [J]. Electronic Science and Technology, 2021, 34(7): 13-18. |
[14] | ZHANG Fei,LIN Mao,MAO Hongkai,SU Fangwen,SUI Jinchi. An AlGaN/GaN High-Electron Mobility Transistor with N-Buried Layer [J]. Electronic Science and Technology, 2021, 34(5): 61-65. |
[15] | YANG Xiaojing,ZHAO Lei. Experimental Study on Polishing Single Crystal Germanium Flakes with Diamond Suspension Polishing Liquid [J]. Electronic Science and Technology, 2021, 34(3): 6-12. |
|