Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (10): 51-58.doi: 10.16180/j.cnki.issn1007-7820.2022.10.009
Previous Articles Next Articles
LU Dongsheng,ZHANG Yujin,ZHU Hai,JIANG Yuewu
Received:
2021-04-11
Online:
2022-10-15
Published:
2022-10-25
Supported by:
CLC Number:
LU Dongsheng,ZHANG Yujin,ZHU Hai,JIANG Yuewu. Image-Splicing Forgery Detection Based on Noise Consistency Under Geometric Constraints[J].Electronic Science and Technology, 2022, 35(10): 51-58.
Table 2.
Comparison of performance index of transplanting geometric constraint filtering algorithm"
方法 | 图像6 | 图像7 | 图像8 | |||
---|---|---|---|---|---|---|
TPR | FPR | TPR | FPR | TPR | FPR | |
文献[ | 0.864 0 | 0.022 8 | 0.725 0 | 0.024 0 | 0.612 3 | 0.061 0 |
文献[ | 0.955 5 | 0.000 0 | 0.894 0 | 0.006 2 | 0.827 0 | 0.013 3 |
文献[ | 0.845 7 | 0.001 5 | 0.676 2 | 0.006 6 | 0.640 2 | 0.078 1 |
文献[ | 0.943 0 | 0.000 7 | 0.885 1 | 0.004 8 | 0.897 6 | 0.000 3 |
本文 | 0.966 8 | 0.167 3 | 0.897 4 | 0.010 0 | 0.863 5 | 0.009 8 |
Figure 6.
Comparison of common post-processing operations (a)The spliced image (b)The spliced image with JPEG compression,QF=95 (c)The spliced image with 0.8 factor down-sampling (d)The detection result without post-processing (e)The detection result with JPEG compression,QF=95 (f)The detection result with 0.8 factor down-sampling"
Table 3.
Performance comparison before and after post-processing/%"
方法 | 无后处理 | JPEG QF=95 | 0.8倍下采样 | |||
---|---|---|---|---|---|---|
TPR | FPR | TPR | FPR | TPR | FPR | |
本文 | 63.60 | 13.80 | 30.40 | 17.50 | 64.30 | 14.10 |
文献[ | 30.80 | 21.30 | 29.60 | 14.90 | 36.20 | 18.90 |
文献[ | 32.40 | 20.40 | 31.70 | 14.35 | 37.70 | 18.80 |
文献[ | 36.80 | 23.00 | 37.70 | 20.70 | 32.00 | 20.90 |
文献[ | 47.90 | 18.50 | 22.00 | 10.80 | 46.00 | 23.50 |
文献[ | 55.70 | 17.90 | 21.00 | 8.60 | 52.40 | 24.20 |
文献[ | 58.50 | 12.20 | 29.30 | 16.80 | 57.90 | 13.80 |
文献[ | 63.60 | 26.50 | 52.40 | 25.00 | 50.80 | 25.60 |
[1] | 武健, 张大兴, 刘志发. 基于WLD特征的图像复制粘贴篡改检测算法[J]. 电子科技, 2017, 30(7):47-50. |
Wu Jian, Zhang Daxing, Liu Zhifa. An image copy and paste feature tamper detection algorithm based on WLD features[J]. Electronic Science and Technology, 2017, 30(7):47-50. | |
[2] | 王晨璐, 朱婷鸽. 基于伪造痕迹的数字图像盲检测综述[J]. 电子科技, 2015, 28(4):186-188. |
Wang Chenlu, Zhu Tingge. A survey of digital image blind detection based on tampering trace[J]. Electronic Science and Technology, 2015, 28(4):186-188. | |
[3] | Huang H Y, Ciou A J. Copy-move forgery detection for image forensics using the superpixel segmentation and the Helmert transformation[J]. EURASIP Journal on Image and Video Processing, 2019(1):1-16. |
[4] |
Chen C C, Lu W Y, Chou C H. Rotational copy-move forgery detection using SIFT and region growing strategies[J]. Multimedia Tools and Applications, 2019, 78(13):18293-18308.
doi: 10.1007/s11042-019-7165-8 |
[5] | 熊士婷, 张玉金, 刘婷婷, 等. 基于最优颜色通道的图像拼接检测[J]. 电子科技, 2020, 33(12):49-53. |
Xiong Shiting, Zhang Yujin, Liu Tingting, et al. Image splicing detection based on optimal color channel[J]. Electronic Science and Technology, 2020, 33(12):49-53. | |
[6] |
Moghaddasi Z, Jalab H A, Noor R M. Image splicing forgery detection based on low-dimensional singular value decompo-sition of discrete cosine transform coefficients[J]. Neural Computing and Applications, 2019, 31(11):7867-7877.
doi: 10.1007/s00521-018-3586-y |
[7] | Kanwal N, Girdhar A, Kaur L, et al. Detection of digital image forgery using fast fourier transform and local fea-tures[C]. Phuket: Proceedings of the International Conference on Automation, Computational and Technology Management, 2019. |
[8] | Vega E A A, Fernández E G, Orozco A L S, et al. Passive image forgery detection based on the demosaicing algorithm and jpeg compression[J]. IEEE Access, 2020(8):11815-11823. |
[9] | Wu X, Shao Z, Ou P, et al. Application of quantisation-based deep-learning model compression in JPEG image steganaly-sis[J]. The Journal of Engineering, 2018(16):1402-1406. |
[10] |
Li H, Luo W, Qiu X, et al. Image forgery localization via integrating tampering possibility maps[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5):1240-1252.
doi: 10.1109/TIFS.2017.2656823 |
[11] |
Shen X, Shi Z, Chen H. Splicing image forgery detection using textural features based on the grey level co-occurrence matrices[J]. IET Image Processing, 2017, 11(1):44-53.
doi: 10.1049/iet-ipr.2016.0238 |
[12] |
Chen M, Fridrich J, Goljan M, et al. Determining image origin and integrity using sensor noise[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(1):74-90.
doi: 10.1109/TIFS.2007.916285 |
[13] | Lukáŝ J, Fridrich J, Goljan M. Detecting digital image forgeries using sensor pattern noise[C]. San Jose: Proceedings of the Security, Steganography and Watermarking of Multimedia Contents VIII, 2006. |
[14] | Popescu A C, Farid H. Statistical tools for digital forensics[C]. Berlin: Proceedings of the International Workshop on Information Hiding, 2004. |
[15] |
Lyu S, Pan X, Zhang X. Exposing region splicing forgeries with blind local noise estimation[J]. International Journal of Computer Vision, 2014, 110(2):202-221.
doi: 10.1007/s11263-013-0688-y |
[16] |
Mahdian B, Saic S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009, 27(10):1497-1503.
doi: 10.1016/j.imavis.2009.02.001 |
[17] | Pan X, Zhang X, Lyu S. Exposing image splicing with in-consistent local noise variances[C]. Seattle: Proceedings of IEEE International Conference on Computational Photography, 2012. |
[18] |
Pyatykh S, Hesser J, Zheng L. Image noise level estimation by principal component analysis[J]. IEEE Transactions on Image Processing, 2012, 22(2):687-699.
doi: 10.1109/TIP.2012.2221728 |
[19] |
Zeng H, Zhan Y, Kang X, et al. Image splicing localization using PCA-based noise level estimation[J]. Multimedia Tools and Applications, 2017, 76(4):4783-4799.
doi: 10.1007/s11042-016-3712-8 |
[20] | 熊士婷, 张玉金, 吴飞, 等. 基于统计噪声水平分析的图像拼接检测[J]. 光电子·激光, 2020, 31(2):214-221. |
Xiong Shiting, Zhang Yujin, Wu Fei, et al. Image splicing detection based on statistical noise level analysis[J]. Journal of Optoelectronics·Laser, 2020, 31(2):214-221. | |
[21] |
Yao H, Wang S, Zhang X, et al. Detecting image splicing based on noise level inconsistency[J]. Multimedia Tools and Applications, 2017, 76(10):12457-12479.
doi: 10.1007/s11042-016-3660-3 |
[22] | Chen G, Zhu F, Ann Heng P. An efficient statistical method for image noise level estimation[C]. Santiago: Proceedings of the IEEE International Conference on Computer Vision, 2015. |
[23] | Obaidat M. Creating a complete model of the wooden pattern from laser scanner point clouds using alpha shapes[J]. Jordan Journal of Civil Engineering, 2019, 13(2):269-279. |
[24] | Hsu Y F, Chang S F. Detecting image splicing using geome-try invariants and camera characteristics consistency[C]. Shenzhen: Proceedings of the IEEE International Conference on Multimedia and Expositions, 2006. |
[1] | FENG Junyi,SHEN Tuo,ZHANG Xuanxiong. Trackside Signal Light Recognition Based on Image Processing [J]. Electronic Science and Technology, 2022, 35(8): 53-57. |
[2] | Meiyi QI,Aihua LIAO. Design of Reliability Evaluation System of Traction Motor Rolling Bearing Based on MATLAB App Designer [J]. Electronic Science and Technology, 2022, 35(3): 79-86. |
[3] | JIN Xiao,WU Fei,YAN Song,LU Wenxia,ZHANG Zhongyi. Fingerprint Location Method of Metro Station Based on GAWK-means [J]. Electronic Science and Technology, 2022, 35(2): 34-39. |
[4] | CHENG Xiaoya,ZHANG Lei. Research on Occluded Face Recognition Method Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(1): 35-39. |
[5] | MA Ding,WU Dingxiang,TANG Lijun. Research on the Defect Method of Detection Circular Ceramic Metal Coating [J]. Electronic Science and Technology, 2021, 34(6): 28-33. |
[6] | PENG Rongjie,PENG Yaxiong,LU Anjiang. Face Recognition System Based on Improved PCA+SVM [J]. Electronic Science and Technology, 2021, 34(12): 56-61. |
[7] | ZHANG Can,CHEN Wei,YIN Zhong. Semantic Segmentation of Cervical Cell Image Based on Weak Supervision [J]. Electronic Science and Technology, 2021, 34(12): 68-74. |
[8] | JU Zhiyong,ZHANG Wenxin,ZHAI Chunyu. Garbage Image Edge Detection Based on Improved Canny Algorithm [J]. Electronic Science and Technology, 2020, 33(8): 16-20. |
[9] | BAI Liyin,PENG Yaxiong,LU Anjiang. Gesture Image Edge Detection Based on Improved Canny Operator [J]. Electronic Science and Technology, 2020, 33(7): 46-50. |
[10] | SHI Weizhong,CAO Weiwei,FAN Yanming,DONG Jiajun,CHEN Shu,XIAO Hao. FPGA-Based Real-Time Edge Detection and its Implementation for Deep-Space Images [J]. Electronic Science and Technology, 2020, 33(5): 45-49. |
[11] | XIONG Shiting,ZHANG Yujin,LIU Tingting,FANG Xiangyu. Image Splicing Detection Based on Optimal Color Channel [J]. Electronic Science and Technology, 2020, 33(12): 49-53. |
[12] | MIAO Ran,LI Feifei,CHEN Qiu. Scene Recognition Algorithm Based on Convolutional Neural Networks and Multi-Scale space Encoding [J]. Electronic Science and Technology, 2020, 33(12): 54-58. |
[13] | WANG Xiang,ZHANG Juan,FANG Zhijun. Unstructured Road Detection Based on Edge Information and Maximum Entropy Segmentation [J]. Electronic Science and Technology, 2020, 33(1): 23-28. |
[14] | LIU Fen. An Efficient Face Recognition System Based on Linear and Nonlinear Algorithms [J]. Electronic Science and Technology, 2019, 32(7): 82-86. |
[15] | ZHANG Yurun,WU Fei,MAO Wankui. Indoor Location Algorithm Based on WiFi-geomagnetism [J]. Electronic Science and Technology, 2019, 32(5): 49-54. |
|