Electronic Science and Technology ›› 2021, Vol. 34 ›› Issue (12): 68-74.doi: 10.16180/j.cnki.issn1007-7820.2021.12.012
Previous Articles Next Articles
ZHANG Can,CHEN Wei,YIN Zhong
Received:
2020-08-09
Online:
2021-12-15
Published:
2021-12-06
Supported by:
CLC Number:
ZHANG Can,CHEN Wei,YIN Zhong. Semantic Segmentation of Cervical Cell Image Based on Weak Supervision[J].Electronic Science and Technology, 2021, 34(12): 68-74.
Table 1
Comparison of MPA of five algorithms"
模型 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 平均值 |
---|---|---|---|---|---|---|---|---|---|---|---|
FCN | 87.4% | 88.9% | 88.4% | 80.8% | 87.8% | 66.8% | 90.0% | 77.5% | 90.0% | 91.6% | 84.9% |
SegNet | 84.3% | 89.6% | 92.3% | 92.9% | 96.2% | 88.7% | 92.7% | 94.0% | 93.7% | 88.9% | 91.3% |
UNet++ | 93.3% | 74.8% | 94.7% | 96.0% | 95.3% | 69.3% | 96.3% | 95.7% | 78.2% | 92.2% | 88.9% |
CGAN | 91.6% | 93.0% | 87.1% | 87.8% | 88.9% | 74.8% | 89.6% | 86.6% | 86.0% | 88.9% | 87.4% |
EDCNet | 97.6% | 97.5% | 97.1% | 97.0% | 98.1% | 97.0% | 97.6% | 96.5% | 98.1% | 98.1% | 97.5% |
Table 2
Comparison of MIoU of five algorithms"
模型 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 平均值 |
---|---|---|---|---|---|---|---|---|---|---|---|
FCN | 80.9% | 78.6% | 82.4% | 78.1% | 80.3% | 61.0% | 81.9% | 74.5% | 80.9% | 80.8% | 77.9% |
SegNet | 80.5% | 67.2% | 83.8% | 88.2% | 91.7% | 79.2% | 87.4% | 89.0% | 85.2% | 58.7% | 81.1% |
UNet++ | 76.2% | 71.9% | 92.7% | 93.4% | 93.4% | 67.6% | 93.6% | 93.1% | 75.9% | 84.2% | 84.2% |
CGAN | 85.9% | 87.2% | 85.0% | 85.1% | 86.7% | 71.4% | 85.0% | 83.9% | 82.8% | 82.7% | 83.6% |
EDCNet | 96.7% | 96.7% | 96.7% | 96.2% | 97.6% | 96.2% | 96.7% | 95.7% | 97.2% | 96.9% | 96.7% |
[1] | 杨志明, 李亚伟, 杨冰, 等. 融合宫颈细胞领域特征的多流卷积神经网络分类算法[J]. 计算机辅助设计与图形学学报, 2019, 31(4):531-540. |
Yang Zhiming, Li Yawei, Yang Bing, et al. Multi flow convolution neural network classification algorithm based on the characteristics of cervical cell field[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4):531-540. | |
[2] | 于月娜. 宫颈细胞图像分割和特征提取算法研究[D]. 湘潭:湘潭大学, 2019. |
Yu Yuena. Research on segmentation and feature extraction algorithms cervical cell images[D]. Xiangtan:Xiangtan University, 2019. | |
[3] | 段鹏, 程文播, 钱庆, 等. 基于瓶颈检测和分水岭算法的重叠宫颈细胞图像分割方法[J]. 中国医疗器械杂志, 2020, 44(1):7-12. |
Duan Peng, Cheng Wenbo, Qian Qing, et al. Overlapping cervical cell Image segmentation based on bottleneck detection and watershed algorithm[J]. Chinese Journal of Medical Instrumentation, 2020, 44(1):7-12. | |
[4] | 孟楚楚, 赵立宏. 结合梯度边缘信息改进的全局阈值法与GVF Snake模型的宫颈细胞图像分割[J]. 智能计算机与应用, 2019, 9(2):28-32. |
Meng Chuchu, Zhao Lihong. Segmentation of cervical cell image using improved global thresholding method with gradient edge information and GVF Snake model[J]. Intelligent Computer and Applications, 2019, 9(2):28-32. | |
[5] | Lassouaoui N, Hamami L. Genetic algorithms and multifractal segmentation of cervical cell images [C].Paris: The Seventh International Symposium on Signal Processing and Its Applications, 2003. |
[6] | 李智能, 刘任任, 梁光明. 基于卷积神经网络的医学宫颈细胞图像的语义分割[J]. 计算机应用与软件, 2019, 36(11):152-156. |
Li Zhineng, Liu Renren, Liang Guangming. Semantic segmentation of medical cervical cell images based on convolutional neural network[J]. Computer Applications and Software, 2019, 36(11):152-156. | |
[7] | Richmond D L, Kainmueller D, Yang M Y, et al. Relating cascaded random forests to deep convolutional neural networks for semantic segmentation[J]. Computer Science, 2015, 36(12):233-245. |
[8] |
Micha J, Rgen K, Li P H, et al. High-precision automated reconstruction of neurons with flood-filling networks[J]. Nature Methods, 2018, 15(18):605-610.
doi: 10.1038/s41592-018-0049-4 |
[9] |
Wei Y, Liang X, Chen Y, et al. Stc:a simple to complex framework for weakly-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(11):2314-2320.
doi: 10.1109/TPAMI.2016.2636150 |
[10] |
Jiao L, Huo L, Hu C, et al. Refined UNet V2: end-to-end patch-wise network for noise-free cloud and shadow segmentation[J]. Remote Sensing, 2020, 12(21):3530-3566.
doi: 10.3390/rs12213530 |
[11] | Qi C R, Su H, Mo K, et al. Pointnet:deep learning on point sets for 3D classification and segmentation [C].Honolulu:IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[12] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 |
[13] | Zheng S, Jayasumana S, Romera-Paredes B, et al. Conditional random felds as recurrent neural network [C]. Santiago:Proceedings of the IEEE International Conference on Computer Vision, 2015. |
[14] |
Wang Y J, Hu S Y, Wang G D, et al. Multi-scale dilated convolution of convolutional neural network for crowd counting[J]. Multimedia Tools and Applications, 2020, 79(5):1057-1073.
doi: 10.1007/s11042-019-08208-6 |
[15] | Pinheiro P O, Lin T Y, Collobert R, et al. Learning to refine object segments [C].Amsterdam:European Conference on Computer Vision, 2016. |
[16] | Prasad R, Chang X J, Cloudhury S, et al. Multi-stage cascaded deconvolution for depth map and surface normal prediction from single image[J]. Pattern Recognition Letters, 2019, 27(16):165-173. |
[17] | Ahron M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processingm, 2006, 54(11):4311-4322. |
[18] | 刘仪. 基于卷积神经网络的低分辨率细胞图像分割算法研究[D]. 西安:西安理工大学, 2019. |
Liu Yi. Research on low resolution cell images segmentation based on convolution neural networks[D]. Xi'an:Xi'an University of Technology, 2019. | |
[19] | Kothari S C, Prabhu G M, Roberts R. A multipath network with cross links[J]. Journal of Parallel & Distributed Computing, 1988, 5(2):185-193. |
[20] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 |
[21] |
Badrinarayanan V, Kendall A, Cipolla R. Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 |
[22] |
Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. UNet++:redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 39(6):1856-1867.
doi: 10.1109/TMI.42 |
[23] | Wei R, Liu B, Zhou F G. A patient-independent CT intensity matching method using conditional Generative Adversarial Networks (cGAN) for single X-ray projection based tumor localization[J]. Physics in Medicine & Biology, 2020,65(14):145009(1-16). |
[24] | 陆超文, 李菲菲, 陈虬. 基于改进哈希算法的图像检索方法[J]. 电子科技, 2020, 33(5):28-32. |
Lu Chaowen, Li Feifei, Chen Qiu. An image retrieval algorithm based on improved hashing method[J]. Electronic Science and Technology, 2020, 33(5):28-32. | |
[25] | 严茂声, 陈家琪. 一种多环境适用的交通标志识别模型[J]. 电子科技, 2019, 32(4):71-76. |
Yan Maosheng, Chen Jiaqi. A multi-environmental traffic sign recognition model[J]. Electronic Science and Technology, 2019, 32(4):71-76. |
[1] | JIN Xiao,WU Fei,YAN Song,LU Wenxia,ZHANG Zhongyi. Fingerprint Location Method of Metro Station Based on GAWK-means [J]. Electronic Science and Technology, 2022, 35(2): 34-39. |
[2] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[3] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[4] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[5] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[6] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[7] | ZHANG Ying,LIU Zilong,WAN Wei. UAV Vehicle Target Detection Based on Faster R-CNN [J]. Electronic Science and Technology, 2021, 34(11): 11-20. |
[8] | LI Cheng,LIU Hao,JIANG Xifeng,WU Junfa,HAN Wengang,GAO Jianguo. Intelligent Diagnosis Algorithm of Generator Stator and Rotor Based on VGG Network [J]. Electronic Science and Technology, 2021, 34(11): 62-66. |
[9] | ZHANG Xiang,SHI Zhicai,CHEN Liang. Expression Recognition Method Based on Cascade Network Optimized by SWA [J]. Electronic Science and Technology, 2020, 33(9): 16-20. |
[10] | LU Chaowen,LI Feifei,CHEN Qiu. An Image Retrieval Algorithm Based on Improved Hashing Method [J]. Electronic Science and Technology, 2020, 33(5): 28-32. |
[11] | SI Qin,LI Feifei,CHEN Qiu. Face Recognition Algorithm Based on Deep Learning and Feature Fusion [J]. Electronic Science and Technology, 2020, 33(4): 18-22. |
[12] | ZHAO Yihe,SHAO Jie,CHENG Yongliang. Behavior Modeling of Class-D Power Amplifier Based on Encoder-Decoder Model [J]. Electronic Science and Technology, 2020, 33(2): 20-24. |
[13] | CHENG Junhua,ZENG Guohui,LIU Jin. Research on Complex Background Image Classification Method Based on Deep Learning [J]. Electronic Science and Technology, 2020, 33(12): 59-66. |
[14] | XIONG Shiting,ZHANG Yujin,LIU Tingting,FANG Xiangyu. Image Splicing Detection Based on Optimal Color Channel [J]. Electronic Science and Technology, 2020, 33(12): 49-53. |
[15] | MIAO Ran,LI Feifei,CHEN Qiu. Scene Recognition Algorithm Based on Convolutional Neural Networks and Multi-Scale space Encoding [J]. Electronic Science and Technology, 2020, 33(12): 54-58. |
|