西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (2): 178-187.doi: 10.19665/j.issn1001-2400.2023.02.018

• 网络空间安全与其他 • 上一篇    下一篇

一种抗分布式机器学习恶意节点的区块链方案

刘远振1(),杨颜博1(),张嘉伟2(),李宝山1(),马建峰2()   

  1. 1.内蒙古科技大学 信息工程学院,内蒙古自治区 包头 014010
    2.西安电子科技大学 网络与信息安全学院,陕西 西安 710071
  • 收稿日期:2022-07-04 出版日期:2023-04-20 发布日期:2023-05-12
  • 通讯作者: 杨颜博(1983—),男,讲师,E-mail:yangyanbo@imust.edu.cn
  • 作者简介:刘远振(1992—),男,内蒙古科技大学硕士研究生,E-mail:lz@stu.imust.edu.cn;|张嘉伟(1985—),男,西安电子科技大学博士研究生,E-mail:zjw8512@126.com;|李宝山(1965—),男,教授,E-mail:libaoshan@imust.edu.cn;|马建峰(1963—),男,教授,E-mail:jfma@mail.xidian.edu.cn
  • 基金资助:
    内蒙古自治区自然科学基金(2020LH06006);内蒙古自治区科技重大专项(2019ZD025);内蒙古科技大学创新基金(2019QDL-B51);内蒙古纪检监察大数据开放项目(IMDBD2020021);内蒙古包头市昆都仑区科技计划(YF2021011)

Blockchain scheme for anti malicious nodes in distributed machine learning

LIU Yuanzhen1(),YANG Yanbo1(),ZHANG Jiawei2(),LI Baoshan1(),MA Jianfeng2()   

  1. 1. School of Information Engineering,Inner Mongolia University of Science & Technology,Baotou 014010,China
    2. School of Cyber Engineering,Xidian University,Xi’an 710071,China
  • Received:2022-07-04 Online:2023-04-20 Published:2023-05-12

摘要:

现有的分布式学习方案大多通过在协议中添加惩戒机制来解决恶意节点问题。此类方法基于两个假设:一是参与方为自身利益最大化而放弃恶意行为的假设,在事件发生后才可以对计算结果进行验证,不适用于一些需要即时验证的场景;二是基于可信第三方的假设,然而在实际中第三方的可信度却无法完全保证。利用区块链的信任机制,针对该问题提出一种基于区块链的抗恶意节点方案——将机器学习中模型训练的全过程通过智能合约实现,以确保机器学习过程不被恶意节点破坏。本方案以基于安全多方计算的分布式机器学习模型为研究模型,利用区块链的智能合约来实现数据的共享、验证和训练过程,所有参与方均只能按照指定的协议执行,将所有参与方转换为半诚实参与方;同时,为解决区块链公开透明特性带来的隐私问题,利用环签名隐藏参与方的数据地址,保护参与方的身份。与传统基于安全多方计算的分布式机器学习模型进行比较,表明本方案在抵抗恶意节点方面具有较强的优越性。

关键词: 区块链, 智能合约, 分布式学习, 恶意节点, 安全多方计算, 环签名

Abstract:

Most of the existing distributed learning schemes solve the problem of malicious nodes by adding a disciplinary mechanism to the protocol.This method is based on two assumptions:1.Participants give up the assumption of malicious behavior to maximize their own interests,and the calculation results can be verified only after the event occurs,which is not suitable for some scenarios requiring immediate verification;2.It is based on the assumption of a trusted third party.However,in practice,the credibility of the third party cannot be fully guaranteed.Using the trust mechanism of the blockchain,this paper proposes an anti malicious node scheme based on the smart contract,which realizes the whole process of model training in machine learning through the smart contract to ensure that the machine learning model is not damaged by malicious nodes.This scheme takes the distributed machine learning model based on secure multi-party computing as the research model,and uses the smart contract of the blockchain to realize the data sharing,verification and training process.All participants can only execute according to the specified protocol,converting all participants into semi sincere participants;At the same time,in order to solve the privacy problems brought by the open and transparent characteristics of the blockchain,ring signature is used to hide the data address of participants and protect the identity of participants.Experiments show that this scheme has great advantages in resisting malicious nodes compared with the traditional distributed machine learning model based on secure multi-party computing.

Key words: blockchain, smart contract, distributed learning, malicious nodes,secure multi-party computation, ring signature

中图分类号: 

  • TP311.1