[1] |
WITTENBURG G, TERFLOTH L, VILLAFUERTE F L, et al. Fence Monitoring: Experimental Evaluation of a Use Case for Wireless Sensor Networks [C]// Lecture Notes in Computer Science: 4373 LNCS. Heidelberg: Springer Verlag, 2007: 163-178.
|
[2] |
YOUSEFI A, BERGER T W. Intelligent Fence Intrusion Detection System: Detection of Intentional Fence Breaching and Recognition of Fence Climbing [C]// Proceedings of the 2008 IEEE Conference on Technologies for Homeland Security. Piscataway: IEEE, 2008: 620-625.
|
[3] |
DZIENGEL N, ZIEGERT M, ADLER S, et al. Energy-aware Distributed Fence Surveillance for Wireless Sensor Networks [C]// Proceedings of the 2011 7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Washington: IEEE Computer Society, 2011: 353-358.
|
[4] |
TAKAGI R, HORISAKI R, TANIDA J . Object Recognition through a Multi-mode Fiber[J]. Optical Review, 2017,24(2) : 117-120.
doi: 10.1007/s10043-017-0303-5
|
[5] |
PAVEY T G, GILSON N D, GOMERSALL S R , et al. Field Evaluation of a Random Forest Activity Classifier for Wrist-worn Accelerometer data[J]. Journal of Science & Medicine in Sport, 2017,20(1):75-80.
doi: 10.1016/j.jsams.2016.06.003
pmid: 27372275
|
[6] |
SHCHERBINA A , et al. Accuracy in Wrist-worn, Sensor-based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort[J]. Journal of Personalized Medicine, 2017,7(2):3.
doi: 10.3390/jpm7020003
pmid: 28538708
|
[7] |
RUEDA F M, GRZESZICK R, FINK G A , et al. Convolutional Neural Networks for Human Activity Recognition Using Body-worn Sensors[J/OL]. [2018-05-20]. DOI: 10.3390/informatics 5020026.
|
[8] |
SINGH D, MERDIVAN E, PSYCHOULA I , et al. Human Activity Recognition Using Recurrent Neural Networks[M/OL]. [2018-05-20]. DOI: 10.1007/978-3-319-66808-6_18.
|
[9] |
ZEBIN T, SCULLY P J, OZANYAN K B . Human Activity Recognition with Inertial Sensors Using a Deep Learning Approach[J/OL]. [2018-05-20]. DOI: 10.1109/ICSENS. 2016. 7808590.
|
[10] |
RAVI D, WONG C, LO B, et al. Deep Learning for Human Activity Recognition: a Resource Efficient Implementation on Low-power Devices [C]//Proceedings of the 2016 IEEE International Conference on Wearable and Implantable Body Sensor Networks. Piscataway: IEEE, 2016: 71-76.
|
[11] |
SCHEURER S, TEDESCO S, BROWN K N, et al. Human Activity Recognition for Emergency First Responders via Body-worn Inertial Sensors [C]//Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks. Piscataway: IEEE, 2017: 5-8.
|
[12] |
LIU F T, WANG Y T, MA H P. Gesture Recognition with Wearable 9-axis Sensors [C]//Proceedings of the 2017 IEEE International Conference on Communications. Piscataway: IEEE, 2017: 1-6.
|
[13] |
COOPER K, SANI S, CORRIGN L , et al. Accuracy of Physical Activity Recognition from a Wrist-worn Sensor[J]. Physiotherapy, 2017,103:e47.
|
[14] |
CHENG L, GUAN Y, ZHU K C, et al. Recognition of Human Activities Using Machine Learning Methods with Wearable Sensors [C]//Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference. Piscataway: IEEE, 2017: 1-7.
|
[15] |
LIU L, LUO G, QIN K , et al. An Algorithm Based on Logistic Regression with Data Fusion in Wireless Sensor Networks[J]. Journal of Wireless Com Network, 2017,2017(1):10.
doi: 10.1186/s13638-016-0793-z
|
[16] |
JAVADI S H, PEIRAVI A . Fusion of Weighted Decisions in Wireless Sensor Networks[J/OL]. [2018-03-20]. DOI: 10.1049/iet-wss.2013.0116.
|
[17] |
EL ABBASSI M A, JILBAB A, BOUROUHOU A . A Robust Model of Multi-sensor Data Fusion Applied in Wireless Sensor Networks for Fire Detection[J]. International Review on Modelling and Simulations, 2016,9:173.
doi: 10.15866/iremos.v9i3.8558
|
[18] |
LANDGREBE D . A Survey of Decision Tree Classifier Methodology[J]. IEEE Transactions on Systems Man and Cybernetics, 2002,21(3):660-674.
doi: 10.1109/21.97458
|