Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (4): 78-90.doi: 10.19665/j.issn1001-2400.20240312
• Information and Communications Engineering • Previous Articles Next Articles
WAN Pengwu1(), HUI Xi1(), CHEN Dongrui1(), WU Bo2()
Received:
2023-12-31
Online:
2024-08-20
Published:
2024-04-03
CLC Number:
WAN Pengwu, HUI Xi, CHEN Dongrui, WU Bo. Modulation recognition based on the two-dimensional asynchronous in-phase quadrature histogram[J].Journal of Xidian University, 2024, 51(4): 78-90.
[1] | SHI Q, KARASAWA Y. Automatic Modulation Identification Based on the Probability Density Function of Signal Phase[J]. IEEE Transactions on Communications, 2012, 60(4):1033-1044. |
[2] | JDID B, HASSAN K, DAYOUB I, et al. Machine Learning Based Automatic Modulation Recognition for Wireless Com-Munications:A Comprehensive Survey[J]. IEEE Access, 2021,9:57851-57873. |
[3] | WEN W, MENDEL J M. Maximum-Likelihood Classification for Digital Amplitude-Phase Modulations[J]. IEEE Transactions on Communications, 2000, 48(2):189-193. |
[4] | ZHANG R, HE C, JING L, et al. A Modulation Recognition System for Underwater Acoustic Communication Signals Based on Higher-Order Cumulants and Deep Learning[J]. Journal of Marine Science and Engineering, 2023, 11(8):1632. |
[5] | SHAH M H, DANG X. Classification of Spectrally Efficient Constant Envelope Modulations Based on Radial Basis Function Network and Deep Learning[J]. IEEE Communications Letters, 2019, 23(9):1529-1533. |
[6] | SHI W, LIU D, CHENG X, et al. Particle Swarm Optimization-Based Deep Neural Network for Digital Modulation Recognition[J]. IEEE Access, 2019,7:104591-104600. |
[7] | 刘高高, 黄东杰, 席昕, 等. 一种特征融合的工作模式识别方法[J]. 西安电子科技大学学报, 2023, 50(6):13-20. |
LIU Gaogao, HUANG Dongjie, XI Xin, et al. Work Pattern Recognition Method Based on Feature Fusion[J]. Journal of Xidian University, 2023, 50(6):13-20. | |
[8] | QU W, YAO G, MENG L. Research on Radar PRI Modulation Pattern Recognition Based on Recurrent Neural Network[C]//2023 4th International Conference on Computer Vision,Image and Deep Learning (CVIDL).Piscataway:IEEE, 2023: 250-254. |
[9] | ZHANG H, LI T, LI Y, et al. Virtual Electromagnetic Environment Modeling Based Data Augmentation for Drone Signal Identification[J]. Journal of Information and Intelligence, 2023, 1(4):308-320. |
[10] | 杨静雅, 齐彦丽, 周一青, 等. CNN-Transformer轻量级智能调制识别算法[J]. 西安电子科技大学学报, 2023, 50(3):40-49. |
YANG Jingya, QI Yanli, ZHOU Yiqing, et al. Algorithm for Recognition of Lightweight Intelligent Modulation Based on the CNN-Transformer Networks[J]. Journal of Xidian University, 2023, 50(3):40-49. | |
[11] | SALEHIN I, ISLAM M S, SAHA P, et al. AutoML:A Systematic Review on Automated Machine Learning with Neural Architecture Search[J]. Journal of Information and Intelligence, 2023, 2(1):52-81. |
[12] | TUNZE G B, HUYNH-THE T, LEE J M, et al. Sparsely Connected CNN for Efficient Automatic Modulation Recognition[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12):15557-15568. |
[13] | LIU M, YANG K, ZHAO N, et al. Intelligent Signal Classification in Industrial Distributed Wireless Sensor Networks Based Industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7):4946-4956. |
[14] | 杜明洋, 杜蒙, 潘继飞, 等. 基于生成对抗网络的雷达脉内信号去噪与识别[J]. 西安电子科技大学学报, 2023, 50(6):133-147. |
DU Mingyang, DU Meng, PAN Jifei, et al. Generative Adversarial Model for Radar Intra-Pulse Signal Denoising and Recognition[J]. Journal of Xidian University, 2023, 50(6):133-147. | |
[15] | KARRA K, KUZDEBA S, PETERSEN J. Modulation Recognition Using Hierarchical Deep Neural Networks[C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks(DySPAN).Piscataway:IEEE, 2017: 1-3. |
[16] | LEE J H, KIM K Y, SHIN Y. Feature Image-Based Automatic Modulation Classification Method Using CNN Algorithm[C]//2019 International Conference on Artificial Intelligence in Information and Communication(ICAIIC).Piscataway:IEEE, 2019: 1-4. |
[17] | HUANG X, LI X. Modulation Identification Method Based on Time-Frequency Analysis and Support Vector Machine[C]//2023 IEEE 2nd International Conference on Electrical Engineering,Big Data and Algorithms(EEBDA).Piscataway:IEEE, 2023: 551-554. |
[18] | WEI S, QU Q, SU H, et al. Intra-Pulse Modulation Radar Signal Recognition Based on Squeeze-and-Excitation Networks[J]. Signal,Image and Video Processing, 2020,14:1133-1141. |
[19] | O’SHEA T J, CORGAN J, CLANCY T C. Convolutional Radio Modulation Recognition Networks[C]//Engineering Applications of Neural Networks:17th International Conference,EANN 2016.Heidelberg:Springer, 2016:213-226. |
[20] | HONG S, ZHANG Y, WANG Y, et al. Deep Learning-Based Signal Modulation Identification in OFDM Systems[J]. IEEE Access, 2019,7:114631-114638. |
[21] | KHAN F N, ZHONG K, AL-ARASHI W H, et al. Modulation Format Identification in Coherent Receivers Using Deep Machine Learning[J]. IEEE Photonics Technology Letters, 2016, 28(17):1886-1889. |
[22] |
KHAN F N, ZHONG K, ZHOU X, et al. Joint OSNR Monitoring and Modulation Format Identification in Digital Coherent Receivers Using Deep Neural Networks[J]. Optics express, 2017, 25(15):17767-17776.
doi: 10.1364/OE.25.017767 pmid: 28789268 |
[23] | YANG F, BAI C, GAO H, et al. Joint Modulation Format Identification and Mode Coupling Estimation Scheme Based on ADTP and MT-CNN for Mode Division Multiplexed Systems[C]//2022 Asia Communications and Photonics Conference (ACP).Piscataway:IEEE, 2022: 737-741. |
[24] | SAIF W S, RAGHEB A M, NEBENDAHL B, et al. Performance Investigation of Modulation Format Identification in Super-Channel Optical Networks[J]. IEEE Photonics Journal, 2022, 14(2):1-10. |
[25] | LEUNG T C, LEE C N. Flow-Based DDoS Detection Using Deep Neural Network with Radial Basis Function Neural Network[C]//2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC).Piscataway:IEEE, 2022: 1774-1779. |
[26] | XIA L, HU P, MA K, et al. Research on Measurement Modeling of Spherical Joint Rotation Angle Based on RBF-ELM Network[J]. IEEE Sensors Journal, 2021, 21(20):23118-23124. |
[27] | PANDA S, PANDA G. On the Development and Performance Evaluation of Improved Radial Basis Function Neural Networks[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2021, 52(6):3873-3884. |
[28] | CHEN B H, HUANG S C, LI C Y, et al. Haze Removal Using Radial Basis Function Networks for Visibility Restoration Applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(8):3828-3838. |
[29] | SLEDGE I J, PRÍNCIPE J C. An Exact Reformulation of Feature-Vector-Based Radial-Basis-Function Networks for Graph-Based Observations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(11):4990-4998. |
[30] | ELANSARI T, OUANAN M, BOURRAY H. Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm[J]. Neural Processing Letters, 2023, 55(8):10569-10587. |
[31] | DEVI M G, AKILA I S. Deep Learning based Compressive Sensing-Radial Basis Functional Neural Network for Image Fusion[C]//2023 4th International Conference on Signal Processing and Communication (ICSPC).Piscataway:IEEE, 2023: 432-435. |
[1] | ZHANG Mingjin, ZHOU Nan, LI Yunsong. Smooth interactive compression network for infrared small target detection [J]. Journal of Xidian University, 2024, 51(4): 1-14. |
[2] | GAO Dihui, SHENG Lijie, XU Xiaodong, MIAO Qiguang. Joint feature approach for image-text cross-modal retrieval [J]. Journal of Xidian University, 2024, 51(4): 128-138. |
[3] | GUAN Yepeng, SU Guangyao, SHENG Yi. Time series prediction method based on the bidirectional long short-term memory network [J]. Journal of Xidian University, 2024, 51(3): 103-112. |
[4] | HE Wangpeng, HU Deshun, LI Cheng, ZHOU Yue, GUO Baolong. Siamese network tracking using template updating and trajectory prediction [J]. Journal of Xidian University, 2024, 51(3): 46-54. |
[5] | LIU Wei, WANG Mengyang, BAI Baoming. Efficient semantic communication method for bandwidth constrained scenarios [J]. Journal of Xidian University, 2024, 51(3): 9-18. |
[6] | LIU Zhenyan, ZHANG Hua, LIU Yong, YANG Libo, WANG Mengdi. Efficient seed generation method for software fuzzing [J]. Journal of Xidian University, 2024, 51(2): 126-136. |
[7] | ZHAI Fengwen, SUN Fanglin, JIN Jing. Study of EEG classification of depression by multi-scale convolution combined with the Transformer [J]. Journal of Xidian University, 2024, 51(2): 182-195. |
[8] | DING Xinmiao, WANG Jiaxing, GUO Wen. Three-dimensional attention-enhanced algorithm for violence scene detection [J]. Journal of Xidian University, 2024, 51(1): 114-124. |
[9] | LIU Bochong, CAI Huaiyu, WANG Yi, CHEN Xiaodong. Self-supervised contrastive representation learning for semantic segmentation [J]. Journal of Xidian University, 2024, 51(1): 125-134. |
[10] | XIONG Jingwei, PAN Jifei, BI Daping, DU Mingyang. Multi-scale convolutional attention network for radar behavior recognition [J]. Journal of Xidian University, 2023, 50(6): 62-74. |
[11] | HOU Yue,ZHENG Xin,HAN Chengyan. Traffic flow prediction method for integrating longitudinal and horizontal spatiotemporal characteristics [J]. Journal of Xidian University, 2023, 50(5): 65-74. |
[12] | FAN Wentong,LI Zhenyu,ZHANG Tao,LUO Xiangyang. JPEG image steganalysis based on deep extraction of stego noise [J]. Journal of Xidian University, 2023, 50(4): 157-169. |
[13] | WANG Yuhua,GAO Sheng,ZHU Jianming,HUANG Chen. Efficient deep learning scheme with adaptive differential privacy [J]. Journal of Xidian University, 2023, 50(4): 54-64. |
[14] | WANG Juan,LIU Zishan,WU Minghu,CHEN Guanhai,GUO Liquan. Multi-scale object detection algorithm combined with super-resolution reconstruction technology [J]. Journal of Xidian University, 2023, 50(3): 122-131. |
[15] | XIE Wen,HUA Wenqiang,JIAO Licheng,WANG Ruonan. Review on polarimetric SAR terrain classification methods using deep learning [J]. Journal of Xidian University, 2023, 50(3): 151-170. |
|