[1] Bayer U, Kruegel C, Kirda E. TTAnalyze: a Tool for Analyzing Malware[DB/OL]. [2013-09-28]. https://www.auto.tuwien.ac.at/~chris/research/doc/eicar06_ttanalyze.pdf.
[2] Willems C, Holz T, Freiling F. Toward Automated Dynamic Malware Analysis Using Cwsandbox[J]. IEEE Security & Privacy, 2007, 5(2): 32-39.
[3] Portokalidis G, Slowinska A, Bos H. Argos: an Emulator for Fingerprinting Zero-day Attacks for Advertised Honeypots with Automatic Signature Generation[J]. ACM SIGOPS Operating Systems Review, 2006, 40(4): 15-27.
[4] Baecher P, Koetter M, Holz T, et al. The Nepenthes Platform: An Efficient Approach to collect malware[C]//Proceedings of the 9th International Symposium on Recent Advances in Intrusion Detection. Heidelberg: Springer, 2006: 165-184.
[5] Jiang X, Xu D. Collapsar: A VM-based Architecture for Network Attack Detention Center[C]//Proceedings of the 13th conference on USENIX Security Symposium. Berkeley: USENIX Association, 2004: 15-28.
[6] Christodorescu M, Jha S, Kruegel C. Mining Specifications of Malicious Behavior[C]//Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering. New York: ACM, 2007: 5-14.
[7] Eskandari M, Hashemi S. A Graph Mining Approach for Detecting Unknown Malwares[J]. Journal of Visual Languages & Computing, 2012, 23(3): 154-162.
[8] 杨轶, 苏璞睿, 应凌云, 等. 基于行为依赖特征的恶意代码相似性比较方法[J]. 软件学报, 2011, 22(10): 2438-2453.
Yang Yi, Su Purui, Ying Lingyun, et al. Dependency-Based Malware Similarity Comparison Method[J]. Journal of Software, 2011, 22(10): 2438-2453.
[9] 王蕊, 苏璞睿, 杨轶, 等. 一种抗混淆的恶意代码变种识别系统[J]. 电子学报, 2011, 39(10): 2322-2330.
Wang Rui, Su Purui, Yang Yi, et al. An Anti-obfuscation Malwaer Variants Identification System[J]. Acta Electronica Sinica, 2011, 39(10): 2322-2330.
[10] Han K S, Kim I K, Im E G. Detection Methods for Malware Variant Using API Call Related Graphs[C]//Proceedings of the 3rd International Conference on Information Technology Convergence and Security. Heidelberg: Springer, 2011: 607-611.
[11] Jain S, Meena Y K. Byte Level n-Gram Analysis for Malware Detection[C]//Proceedings of the 5th International Conference on Information Processing Computer Networks and Intelligent Computing. Heidelberg: Springer, 2011: 51.
[12] Ye Y, Wang D, Li T, et al. An intelligent PE-malware Detection System Based on Association Mining[J]. Journal in Computer Virology, 2008, 4(4): 323-334.
[13] Fredrikson M, Jha S, Christodorescu M, et al. Synthesizing Near-optimal Malware Specifications from Suspicious Behaviors[C]//Proceedings of the 2010 IEEE Symposium on Security and Privacy. New York: IEEE, 2010: 45-60.
[14] Freund Y, Schapire R E. Experiments with a New Boosting Algorithm[C]//Proceedings of the 13th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 1996: 148-156.
[15] 王勇, 陶晓玲. 分级结构的AdaBoost入侵检测方法研究[J]. 西安电子科技大学学报, 2008, 35(2): 345-350.
Wang Yong, Tao Xiaoling. Study of the Intrusion Detection Method Based on AdaBoost with a Hierarchical Structure[J]. Journal of Xidian University, 2008, 35(2): 345-350.
[16] Mason L, Baxter J, Bartlett P, et al. Boosting Algorithms As Gradient Descent in Function Space[C]//Proceedings of the Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1999: 512-518.
[17] Hall M, Frank E, Holmes G, et al. The WEKA Data Mining Software: an Update[J]. ACM SIGKDD Explorations Newsletter, 2009, 11(1): 10-18. |