[1] |
WANG D M, HANSEN J H L . Single Channel Speech Enhancement Based on Harmonic Estimation Combined with Statistical Based Method to Improve Speech Intelligibility for Cochlear Implant Recipients[J]. Acoustical Society of America Journal, 2017,141(5):3985-3986.
doi: 10.1121/1.4989114
|
[2] |
刘文举, 聂帅, 梁山 , 等. 基于深度学习语音分离技术的研究现状与进展[J]. 自动化学报, 2016,42(6):819-833.
doi: 10.16383/j.aas.2016.c150734
|
|
LIU Wenju, NIE Shuai, LIANG Shan , et al. Deep Learning Based Speech Separation Technology and Its Developments[J]. Acta Automatica Sinica, 2016,42(6):819-833.
doi: 10.16383/j.aas.2016.c150734
|
[3] |
XU Y, DU J, DAI L R , et al. An Experimental Study on Speech Enhancement Based on Deep Neural Networks[J]. IEEE Signal Processing Letters, 2014,21(1):65-68.
doi: 10.1109/LSP.2013.2291240
|
[4] |
XU Y, DU J, DAI L R , et al. A Regression Approach to Speech Enhancement Based on Deep Neural Networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015,23(1):7-19.
doi: 10.1109/TASLP.2014.2364452
|
[5] |
CHEN J, WANG Y, YOHO S E , et al. Large-scale Training to Increase Speech Intelligibility for Hearing-impaired Listeners in Novel Noises[J]. Journal of the Acoustical Society of America, 2016,139(5):2604-2612.
doi: 10.1121/1.4948445
pmid: 27250154
|
[6] |
CHEN J, WANG D . Long Short-term Memory for Speaker Generalization in Supervised Speech Separation[J]. Journal of the Acoustical Society of America, 2017,141(6):4705-4714.
doi: 10.1121/1.4986931
pmid: 28679261
|
[7] |
WILLIAMSON D S, WANG D L . Time-frequency Masking in the Complex Domain for Speech Dereverberation and Denoising[J]. IEEE/ACM Transactions on Audio , Speech, and Language Processing, 2017,25(7):1492-1501.
doi: 10.1109/TASLP.2017.2696307
|
[8] |
袁文浩, 孙文珠, 夏斌 , 等. 利用深度卷积神经网络提高未知噪声下的语音增强性能[J]. 自动化学报, 2018,44(4):751-759.
doi: 10.16383/j.aas.2018.c170001
|
|
YUAN Wenhao, SUN Wenzhu, XIA Bin , et al. Improving Speech Enhancement in Unseen Noise Using Deep Convolutional Neural Network[J]. Acta Automatica Sinica, 2018,44(4):751-759.
doi: 10.16383/j.aas.2018.c170001
|
[9] |
LOIZOU P C . Speech Enhancement Based on Perceptually Motivated Bayesian Estimators of the Magnitude Spectrum[J]. IEEE Transactions on Speech and Audio Processing, 2005,13(5):857-869.
doi: 10.1109/TSA.2005.851929
|
[10] |
GAROFOLO J S, LAMEL L F, FISHER W M , et al. TIMIT Acoustic-Phonetic Continuous Speech Corpus: LDC93S1[R/OL]. [2018-09-10]. https://catalog.ldc.upenn.edu/LDC93S1.
|
[11] |
HU G N . 100 Nonspeech Environmental Sounds[S/OL]. [ 2018- 09- 03]. http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html.
|
[12] |
VARGA A, STEENEKEN H J M . Assessment for Automatic Speech Recognition: II. NOISEX-92: a Database and an Experiment to Study the Effect of Additive Noise on Speech Recognition Systems[J]. Speech Communication, 1993,12(3):247-251.
doi: 10.1016/0167-6393(93)90095-3
|
[13] |
YU D, EVERSOLE A, SELTZER M , et al. An Introduction to Computational Networks and the Computational Network Toolkit : MSR-TR-2014-112 [R/OL]. [2018-09-10].https://www.microsoft.com/en-us/research/publication/an-introduction-to-computational-networks-and-the-computational-network-toolkit/.
|
[14] |
RIX A W, BEERENDS J G, HOLLIER M P , et al. Perceptual Evaluation of Speech Quality (PESQ)—A New Method for Speech Quality Assessment of Telephone Networks and Codecs[C]// Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2001: 749-752.
|
[15] |
TAAL C H, HENDRIKS R C, HEUSDENS R , et al. An Algorithm for Intelligibility Prediction of Time-frequency Weighted Noisy Speech[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011,19(7):2125-2136.
doi: 10.1109/TASL.2011.2114881
|