Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (1): 48-57.doi: 10.19665/j.issn1001-2400.2023.01.006
Previous Articles Next Articles
LIU Xiaowen(),GUO Jichang(),ZHENG Sida()
Received:
2022-04-26
Online:
2023-02-20
Published:
2023-03-21
CLC Number:
LIU Xiaowen, GUO Jichang, ZHENG Sida. Weakly-supervised salient object detection with the multi-scale progressive network[J].Journal of Xidian University, 2023, 50(1): 48-57.
"
算法 | ECSSD | DUT-OMROM | DUTS | PASCAL-S | HKU-IS | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fβ↑ | MAE↓ | Fβ↑ | MAE↓ | Fβ↑ | MAE↓ | Fβ↑ | MAE↓ | Fβ↑ | MAE↓ | |
PiCANet(2019) | 0.915 9 | 0.036 9 | 0.741 1 | 0.059 7 | 0.815 1 | 0.046 2 | 0.838 6 | 0.068 4 | 0.905 1 | 0.032 5 |
BASNet(2019) | 0.931 2 | 0.034 5 | 0.779 1 | 0.055 3 | 0.838 7 | 0.045 9 | 0.837 8 | 0.075 5 | 0.919 3 | 0.029 8 |
ITSD(2020) | 0.927 5 | 0.036 5 | 0.771 3 | 0.061 2 | 0.855 2 | 0.039 8 | 0.857 7 | 0.065 3 | 0.913 9 | 0.032 1 |
EBMG(2021) | 0.954 4 | 0.021 4 | 0.816 4 | 0.049 4 | 0.899 4 | 0.027 8 | 0.880 5 | 0.052 1 | 0.941 2 | 0.021 6 |
MWS*(2019) | 0.850 6 | 0.078 0 | 0.666 1 | 0.082 3 | 0.705 3 | 0.081 5 | 0.753 7 | 0.113 0 | 0.827 9 | 0.064 8 |
SS*(2020) | 0.867 0 | 0.057 6 | 0.696 9 | 0.076 7 | 0.744 7 | 0.067 0 | 0.788 4 | 0.139 9 | 0.855 8 | 0.048 7 |
SBB*(2021) | 0.855 6 | 0.068 9 | 0.698 3 | 0.072 0 | 0.735 1 | 0.070 2 | 0.849 0 | 0.053 0 | ||
MFNet*(2021) | 0.827 0 | 0.087 5 | 0.592 9 | 0.105 5 | 0.693 7 | 0.081 1 | 0.739 6 | 0.117 1 | 0.830 1 | 0.060 6 |
MSPNet* | 0.870 6 | 0.057 8 | 0.711 7 | 0.070 7 | 0.753 8 | 0.063 9 | 0.788 0 | 0.094 4 | 0.866 1 | 0.045 3 |
"
算法 | ECSSD | DUT-OMROM | DUTS | PASCAL-S | HKU-IS | |||||
---|---|---|---|---|---|---|---|---|---|---|
Sα↑ | Eξ↑ | Sα↑ | Eξ↑ | Sα↑ | Eξ↑ | Sα↑ | Eξ↑ | Sα↑ | Eξ↑ | |
MWS*(2019) | 0.747 7 | 0.884 2 | 0.734 8 | 0.762 8 | 0.708 5 | 0.814 4 | 0.701 4 | 0.789 9 | 0.745 1 | 0.895 0 |
SS*(2020) | 0.860 6 | 0.896 3 | 0.789 8 | 0.818 3 | 0.795 4 | 0.837 4 | 0.794 9 | 0.821 0 | 0.860 5 | 0.921 2 |
SBB*(2021) | 0.822 4 | 0.893 8 | 0.762 5 | 0.835 4 | 0.771 8 | 0.850 6 | 0.832 6 | 0.920 1 | ||
MFNet*(2021) | 0.768 5 | 0.872 1 | 0.686 8 | 0.765 9 | 0.738 2 | 0.816 3 | 0.723 3 | 0.809 2 | 0.794 4 | 0.902 9 |
MSPNet* | 0.865 4 | 0.903 4 | 0.796 4 | 0.835 2 | 0.807 0 | 0.849 4 | 0.797 2 | 0.833 1 | 0.867 1 | 0.928 0 |
[1] | KARPATHY A, MILLER S, LI F. Object Discovery in 3D Scenes via Shape Analysis[C]// IEEE International Conference on Robotics and Automation.Piscataway:IEEE, 2013:2088-2095. |
[2] | NOH H, ARAUJO A, SIM J, et al. Large-Scale Image Retrieval with Attentive Deep Local Features[C]// IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:3476-3485. |
[3] | LI P, CHEN B, OUYANG W, et al. Gradnet:Gradient-Guided Network for Visual Object Tracking[C]// IEEE/CVF International Conference on Computer Vision.Piscataway:IEEE, 2019:6161-6170. |
[4] | QIN X, ZHANG Z, HUANG C, et al. BASNet:Boundary-Aware Salient Object Detection[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:7471-7481. |
[5] | LIU N, HAN J, YANG M. Picanet:Learning Pixel-Wise Contextual Attention for Saliency Detection[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:3089-3098. |
[6] | ZHOU H, XIE X, LAI J, et al. Interactive Two-Stream Decoder for Accurate and Fast Saliency Detection[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:9138-9147. |
[7] | ZHANG J, XIE J, BAMES N, et al. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction[C]// Annual Conference on Neural Information Processing Systems.Canada:NIPS, 2021:1-16. |
[8] | WANG L, LU H, WANG Y, et al. Learning to Detect Salient Objects with Image-Level Supervision[C]// IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:3796-3805. |
[9] | PIAO Y, WANG J, ZHANG M, et al. MFNet:Multi-Filter Directive Network for Weakly Supervised Salient Object Detection[C]// IEEE/CVF International Conference on Computer Vision.Piscataway:IEEE, 2021:4116-4125. |
[10] |
LIU Y, WANG P, CAO Y, et al. Weakly-Supervised Salient Object Detection with Saliency Bounding Boxes[J]. IEEE Transactions on Image Processing, 2021, 30:4423-4435.
doi: 10.1109/TIP.2021.3071691 |
[11] | ZHANG J, YU X, LI A, et al. Weakly-Supervised Salient Object Detection via Scribble Annotations[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:12543-12552. |
[12] | ZENG Y, ZHUGE Y, LU H. Learning to Detect Salient Object with Multi-Source Weak Supervision[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:6067-6076. |
[13] | ZAMIR S, ARORA A, KHAN S, et al. Multi-Stage Progressive Image Restoration[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:14816-14826. |
[14] | HUYNH C, TRAN A, LUU K, et al. Progressive Semantic Segmentation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:16750-16759. |
[15] | 杨云航, 闵连权. 采用空洞卷积的多尺度融合草图识别模型[J]. 西安电子科技大学学报, 2021, 48(5):92-99. |
YANG Yunhang, MIN Lianquan. Multi-Scale Fusion Sketch Model by Dilated Convolution[J]. Journal of Xidian University, 2021, 48(5):92-99. | |
[16] |
CHEN S, XIE E, GE C, et al. CycleMLP:A MLP-Like Architecture for Dense Prediction[C/OL].[2022-04-04].DOI:1048550/arXiv.2107.10224.
doi: 1048550/arXiv.2107.10224 |
[17] |
LIAN D, YU Z, SUN X, et al. AS-MLP:An Axial Shifted MLP Architecture for Vision[C/OL].[2022-07-18].DOI:1048550/arXiv.2107.08391.
doi: 1048550/arXiv.2107.08391 |
[18] |
CANNY J. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.
pmid: 21869365 |
[19] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]// International Conference on Learning Representations. San Diego: ICLR, 2015:1-14. |
[20] | WEI J, WANG S, WU Z, et al. Label Decoupling Framework for Salient Object Detection[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:13022-13031. |
[21] | TANG M, DJELOUAH A, PERAZZI F, et al. Normalized Cut Loss for Weakly-Supervised CNN Segmentation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:1818-1827. |
[22] | YAN Q, XU L, SHI J, et al. Hierarchical Saliency Detection[C]// IEEE Conference on Computer Vision and Pattern Recognition,.Piscataway:IEEE: 2013:1155-1162. |
[23] | YANG C, ZHANG L, LU H, et al. Saliency Detection via Graph-Based Manifold Ranking[C]// IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2013:3166-3173. |
[24] | LI Y, HOU X, KOCH C, et al. The Secrets of Salient Object Segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2014:280-287. |
[25] | LI G, YU Y. Visual Saliency Based on Multiscale Deep Features[C]// IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:5455-5463. |
[1] | LIU Bochong,CAI Huaiyu,YANG Shiyuan,LI Haotian,WANG Yi,CHEN Xiaodong. Lightweight semantic segmentation network for autonomous driving scenarios [J]. Journal of Xidian University, 2023, 50(1): 118-128. |
[2] | ZHANG Yali,LI Wenyuan,LI Changlu,DING Shaobo. Method for enhancement of the multi-scale low-light image by combining an attention guidance [J]. Journal of Xidian University, 2023, 50(1): 129-136. |
[3] | ZHANG Qiang, YANG Xinpeng, ZHAO Shixiang, WEI Dongdong, HAN Zhen. Vehicle-target detection network for SAR images based on the attention mechanism [J]. Journal of Xidian University, 2023, 50(1): 36-47. |
[4] | ZHANG Zehuan, LIU Qiang, GUO Difei. High efficient framework for large-scale zero-shot image recognition [J]. Journal of Xidian University, 2022, 49(6): 103-110. |
[5] | LI Jiaojiao, LIU Zhiqiang, SONG Rui, LI Yunsong. Algorithm for segmentation of remote sensing imagery using the improved Unet [J]. Journal of Xidian University, 2022, 49(6): 67-75. |
[6] | ZHANG Zhaoyu,TIAN Chunna,ZHOU Heng,TIAN Xilan. Online classification jointed RGBT tracking based on the dual attention Siamese network [J]. Journal of Xidian University, 2022, 49(6): 76-85. |
[7] | LI Yangyang, MAO Heting, ZHANG Xiaolong, CHEN Yanqiao, CHAI Xinghua. Small object detection in remote sensing images using non-local context information [J]. Journal of Xidian University, 2022, 49(5): 117-124. |
[8] | QI Peihan,LI Bing,XIE Aiping,GAO Xianglan. Deep learning reconstruction algorithm for incomplete samples of frequency hopping communication signals [J]. Journal of Xidian University, 2022, 49(4): 1-7. |
[9] | MA Lun,LIU Xin,ZHAO Bin,WANG Ruiping,LIAO Guisheng,ZHANG Yajing. Impaired behavior recognition by using the multi-head-siamese neural network [J]. Journal of Xidian University, 2022, 49(4): 100-108. |
[10] | JING Peiguang,LI Yaxin,SU Yuting. Micro-video multi-label classification method based on multi-modal feature encoding [J]. Journal of Xidian University, 2022, 49(4): 109-117. |
[11] | LIU Di,GUO Jichang,WANG Yudong,ZHANG Yi. Multi-scale salient object detection network combining an attention mechanism [J]. Journal of Xidian University, 2022, 49(4): 118-126. |
[12] | SHI Jiarong,LI Jinhong. Novel deep matrix factorization and its application in the recommendation system [J]. Journal of Xidian University, 2022, 49(3): 171-182. |
[13] | ZHANG Jing,ZHANG Xueying,CHEN Guijun,YAN Chao. EEG emotion recognition based on the 3D-CNN and spatial-frequency attention mechanism [J]. Journal of Xidian University, 2022, 49(3): 191-198. |
[14] | WANG Yong,JIN Weizhao,FENG Wei,QUAN Yinghui. Improved violent behavior detection method for the R(2+1)D network [J]. Journal of Xidian University, 2022, 49(2): 155-163. |
[15] | XU Ying,LIU Shuai,SHAO Meng,YUE Guodong,AN Dong. Multi-scale generation antagonistic network for the low-dose CT images super-resolution reconstruction algorithm [J]. Journal of Xidian University, 2022, 49(2): 228-236. |
|