Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (2): 228-236.doi: 10.19665/j.issn1001-2400.2022.02.026
• Computer Science and Technology & Cyberspace Security • Previous Articles
XU Ying1,2(),LIU Shuai1(),SHAO Meng1(),YUE Guodong1(),AN Dong1()
Received:
2020-08-03
Online:
2022-04-20
Published:
2022-05-31
Contact:
Dong AN
E-mail:xuying@sjzu.edu.cn;1826380327@stu.sjzu.edu.cn;mshao@sjzu.edu.cn;ygd@sjzu.edu.cn;andong@sjzu.edu.cn
CLC Number:
XU Ying,LIU Shuai,SHAO Meng,YUE Guodong,AN Dong. Multi-scale generation antagonistic network for the low-dose CT images super-resolution reconstruction algorithm[J].Journal of Xidian University, 2022, 49(2): 228-236.
"
重建图像 | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
CTF | 3.82 | 3.90 | 3.81 | 3.97 | 3.87 | 3.91 | 3.93 | 3.85 |
FSRCNN | 4.03 | 3.94 | 3.96 | 4.13 | 3.99 | 4.05 | 4.11 | 4.09 |
RDN | 3.98 | 4.01 | 4.12 | 4.24 | 4.12 | 4.16 | 4.21 | 4.19 |
SRGAN | 4.26 | 4.16 | 4.22 | 4.31 | 4.23 | 4.32 | 4.28 | 4.17 |
GAN-CIRCLE | 4.37 | 4.35 | 4.41 | 4.39 | 4.43 | 4.38 | 4.41 | 4.36 |
MSRGAN | 4.42 | 4.37 | 4.46 | 4.48 | 4.45 | 4.39 | 4.51 | 4.43 |
[1] |
DONG C, LOY C C, HE K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281 |
[2] | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-Time Single Image and Video Super Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2016:1874-1883. |
[3] | KIM J, LEE J K, LEE K M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2016:1646-1654. |
[4] | MAO X, SHEN C, YANG Y, et al. Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections[C]// Proceedings of International Conference on Neural Information Processing Systems.Heidelberg:Springer, 2016:2810-2818. |
[5] | LI J C, FANG F, MEI K F, et al. Multi-Scale Residual Network for Image Super-Resolution[C]// Proceedings of 2018 ECCV European Conference on Computer Vision.Heidelberg:Springer, 2018:527-542. |
[6] | PARK S J, SON H, CHO S H. et al. SRFeat:Single Image Super-Resolution with Feature Discrimination[C]// Proceedings of 2018 ECCV European Conference on Computer Vision.Heidelberg:Springer, 2018:455-471. |
[7] | BULAT A, YANG J, GEORGIOS T. To Learn Image Super-Resolution,Use a GAN to Learn How to do Image Degradation First[C]// Proceedings of 2018 ECCV European Conference on Computer Vision.Heidelberg:Springer, 2018:187-202. |
[8] | LEDIG C, THEIS L, HUSZARF, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2017:105-114. |
[9] |
FRID-ADAR M, DIAMANT I, KLANG E, et al. GAN-Based Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion Classification[J]. Neurocomputing, 2018, 321:321-331.
doi: 10.1016/j.neucom.2018.09.013 |
[10] | ISOLA P, ZHU J, ZHOU T, et al. Image-To-Image Translation with Conditional Adversarial Networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2017:5967-5976. |
[11] |
WU Z, SHEN C, DEN HENGELA V. Wider or Deeper:Revisiting the ResNet Model for Visual Recognition[J]. Pattern Recognition, 2019, 90:119-133.
doi: 10.1016/j.patcog.2019.01.006 |
[12] | ODENA A, DUMOULIN V, OLAH C, et al. Deconvolution and Checkerboard Artifacts(2016)[EB/OL].[2016-10-17]https://distill.pub/2016/deconv-checkerboard/?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound. |
[13] | SHI W, CABALLERO J, HUSZáR F, et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE, 2016:1874-1883. |
[14] |
WANG Z, JIANG K, YI P, et al. Ultra-Dense GAN for Satellite Imagery Super-Resolution[J]. Neurocomputing, 2020, 398:328-337.
doi: 10.1016/j.neucom.2019.03.106 |
[15] | 张杨忆, 林泓, 管钰华, 等. 改进残差块和对抗损失的GAN图像超分辨率重建[J]. 哈尔滨工业大学学报, 2019, 51(11):128-137. |
ZHANG Yangyi, LIN Hong, GUAN Yuhua, et al. GAN Image Super-Resolution Reconstruction Model with Improved Residual Block and Adversarial Loss[J]. Journal of Harbin Institute of Technology, 2019, 51(11):128-137. | |
[16] |
ZHOU D, DUAN R, ZHAO L, et al. Single Image Super-Resolution Reconstruction Based on Multi-Scale Feature Mapping Adversarial Network[J]. Signal Processing, 2020, 166:107251.
doi: 10.1016/j.sigpro.2019.107251 |
[17] |
KASEM H M, HUNG K W, JIANG J. Spatial Transformer Generative Adversarial Network for Robust Image Super-Resolution[J]. IEEE Access, 2019, 7:182993-183009.
doi: 10.1109/ACCESS.2019.2959940 |
[18] |
MAHAPATRA D, BOZORGTABAR B, GARNAVI R, et al. Image Super-Resolution Using Progressive Generative Adversarial Networks for Medical Image Analysis[J]. Computerized Medical Imaging and Graphics, 2019, 71:30-39.
doi: 10.1016/j.compmedimag.2018.10.005 |
[19] |
ZHANG K, TAO D,GAOX, et al. Coarse-to-Fine Learning for Single-Image Super-Resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5):1109-1122.
doi: 10.1109/TNNLS.2015.2511069 |
[20] | DONG C, LOY CC, TANG X, et al. Accelerating the Super-Resolution Convolutional Neural Network[C]// European Conference on Computer Vision.Heidelberg:Springer, 2016:391-407. |
[21] |
YOU C, LI G, ZHANG Y, et al. CT Super-Resolution GAN Constrained by the Identical,Residual,and Cycle Learning Ensemble (GAN-CIRCLE)[J]. IEEE Transactions on Medical Imaging, 2020, 39(1):188-203.
doi: 10.1109/TMI.2019.2922960 |
[1] | SUN Jingrong,XIE Linchang,DU Mengxin,LUO Liyan. Adaptive transmittance dehazing algorithm based on non-linear transformation [J]. Journal of Xidian University, 2022, 49(1): 208-215. |
[2] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[3] | HAN Yongsai,MA Shiping,HE Linyuan,LI Chenghao,ZHU Mingming,ZHANG Fei. Detection of the object in the fast remote sensing airport area on the improved YOLOv3 [J]. Journal of Xidian University, 2021, 48(5): 156-166. |
[4] | ZHAN Keyu,SUN Yue,LI Ying. Video super-resolution based on multi-scale 3D convolution [J]. Journal of Xidian University, 2021, 48(5): 8-14. |
[5] | SUN Zhengyang,DONG Mei,CHEN Baixiao. Interrupted sampling repeater jamming suppression based on time-frequency analysis and band-pass filtering [J]. Journal of Xidian University, 2021, 48(2): 139-146. |
[6] | CHENG Tianyou,LIN Yanping,MA Xiaojun. Ultrasound probe guiding method using vision and force [J]. Journal of Xidian University, 2020, 47(1): 80-87. |
[7] | WANG Ziyi,SU Yuting,LIU Yanyan,ZHANG Wei. Algorithm for segmentation of smoke using the improved DeeplabV3 network [J]. Journal of Xidian University, 2019, 46(6): 52-59. |
[8] | LIU Shudong,WANG Xiaomin,ZHANG Yan. Symmetric residual convolution neural networks for the image super-resolution reconstruction [J]. Journal of Xidian University, 2019, 46(5): 15-23. |
[9] | ZHANG Jintao,LEI Jie,WU Lingyun,HUANG Biying,LI Yunsong. Improved algorithm for hyperspectral endmember extraction and its FPGA implementation [J]. Journal of Xidian University, 2019, 46(4): 22-27. |
[10] | ZHU Suya,DU Jianchao,LI Yunsong,WANG Xiaopeng. Method for bridge crack detection based on the U-Net convolutional networks [J]. Journal of Xidian University, 2019, 46(4): 35-42. |
[11] | CHEN Xiaofan,SHEN Haijie,BIAN Qian,WANG Zhenduo,TIAN Xinzhi. Face image super-resolution with an attention mechanism [J]. Journal of Xidian University, 2019, 46(3): 148-153. |
[12] | SHI Wenjun,GUO Congzhou,TONG Xiaochong,TIAN Yuan,CAO Wen. Super-resolution reconstruction of infrared remote sensing images with radiation fidelity [J]. Journal of Xidian University, 2019, 46(2): 107-113. |
[13] | LAI Rui,GUAN Juntao,XU Kunran,XIONG Ai,YANG Yintang. Cascade residual learning method for infrared image nonuniformity correction [J]. Journal of Xidian University, 2019, 46(1): 14-19. |
[14] | GUO Songge;LV Donghui;REN Yanli. Improved (k, n) tagged visual cryptography scheme [J]. Journal of Xidian University, 2018, 45(5): 170-176+183. |
[15] | HUANG Yong;LIU Fang. Detecting water bridge in SAR images via a scene semantic algorithm [J]. Journal of Xidian University, 2018, 45(4): 40-44. |
|