[1] Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995.
[2] Luo Y, Wu C M, Zhang Y. Facial Expression Recognition Based on Fusion Feature of PCA and LBP with SVM[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(9): 2767-2770.
[3] Xiao Y C, Wang H G, Zhang L, et al. Two Methods of Selecting Gaussian Kernel Parameters for One-class SVM and Their Application to Fault Detection[J]. Knowledge-Based Systems, 2014, 59(3): 75-84.
[4] Zhong H M, Miao C Y, Shen Z Q, et al. Comparing the Learning Effectiveness of BP, ELM, I-ELM, and SVM for Corporate Credit Ratings[J]. Neurocomputing, 2014, 128(3): 285-295.
[5] Marseguerra M. Early Detection of Gradual Concept Drifts by Text Categorization and Support Vector Machine Techniques: the Trio Algorithm[J]. Reliability Engineering & System Safety, 2014, 129(9):1-9.
[6] Guyon I, Matic N, Vapnik V N. Discovering Information Patterns And Data Cleaning[M]. Cambridge: MIT Press, 1996.
[7] Debruyne M. An Outlier Map for Support Vector Machine Classification[J]. The Annals of Applied Statistics, 2009, 3(4): 1566-1580.
[8] Lin C F,Wang S D. Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471.
[9] Wang Y Q, Wang S Y, Lai K K. A New Fuzzy Support Vector Machine to Evaluate Credit Risk[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(6): 820-831.
[10] Weiss G M. Mining with Rarity: a Unifying Framework[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 7-19.
[11] He H,Garcia E. Learning from Imbalanced Data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
[12] Han H, Wang W Y, Mao B H. Borderline-SMOTE: a New Over-Sampling Method in Imbalanced Data Sets Learning[C]//Proceedings of International Conference on Intelligent Computing. Berlin: Springer-Verlag, 2005: 878-887.
[13] 王超学, 潘正茂, 董丽丽, 等. 基于改进SMOTE的非平衡数据集分类研究[J]. 计算机工程与应用, 2013, 49(2): 184-187.
Wang Chaoxue, Pan Zhengmao, Dong Lili, et al. Research on Classification for Imbalanced Dataset Based on Improved SMOTE[J]. Computer Engineering and Applications, 2013, 49(2): 184-187.
[14] Imam T, Ting K, Kamruzzaman J. z-SVM: an SVM for Improved Classification of Imbalanced Data[C]//Proceedings of the 19th Australian Joint Conference on AI. Berlin: Springer-Verlag, 2006: 264-273.
[15] 刘进军. 基于惩罚的 SVM 和集成学习的非平衡数据分类算法研究[J].计算机应用与软件, 2014, 31(1): 186-190.
Liu Jinjun. Research on Classifying Unbalanced Data Based on Penalty-based SVM and Ensemble Learning[J]. Computer Applications and Software, 2014, 31(1): 186-190.
[16] 孙全尚. 不平衡数据集分类方法研究[J]. 科教文汇, 2013(9): 92-93.
Sun Quanshang. Research on Imbalanced Data Sets Classification Method[J]. The Science Education Article Collects, 2013(9): 92-93.
[17] Akbani R, Kwek S, Japkowicz N. Applying Support Vector Machines to Imbalanced Datasets[C]//Proceedings of the 15th European Conference on Machine Learning. Berlin: Springer-Verlag, 2004: 39-50.
[18] Hsu C W, Lin C L. A Comparison of Methods for Multiclass Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
[19] Choi S W, Park J Y. Nonparametric Additive Model with Grouped Lasso and Maximizing Area under the ROC Curve [J]. Computational Statistics and Data Analysis, 2014, 77(9): 313-325. |