Journal of Xidian University ›› 2021, Vol. 48 ›› Issue (4): 159-167.doi: 10.19665/j.issn1001-2400.2021.04.021
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
SONG Jianqiao(),WANG Feng(
),NIU Jin(
),SHI Zezhou(
),MA Junhui(
)
Received:
2020-04-24
Online:
2021-08-30
Published:
2021-08-31
CLC Number:
SONG Jianqiao,WANG Feng,NIU Jin,SHI Zezhou,MA Junhui. Potential emotion recognition based on the fusion of the spatio-temporal neural network and facial pulse signals[J].Journal of Xidian University, 2021, 48(4): 159-167.
[1] | MUKHERJEE S, VAMSHI B, REDDY K V S V K, et al. Recognizing Facial Expressions Using Novel Motion Based Features[C]//Proceedings of the Tenth Indian Conference on Computer Vision,Graphics and Image Processing.Piscataway:IEEE, 2016: 32. |
[2] |
LI X, HONG X, MOILANEN A, et al. Towards Reading Hidden Emotions:A Comparative Study of Spontaneous Micro-Expression Spotting and Recognition Methods[J]. IEEE Transactions on Affective Computing, 2018, 9(4):563-577.
doi: 10.1109/T-AFFC.5165369 |
[3] | WU Q, SHEN X B, FU X L. The Machine Knows What You Are Hiding:An Automatic Micro-Expression Recognition System[C]//Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction-Volume Part II.Springer Berlin, 2011:152-162. |
[4] |
LU H, KPALMA K, RONSIN J. Motion Descriptors for Micro-Expression Recognition[J]. Signal Processing-Image Communication, 2018, 67:108-117.
doi: 10.1016/j.image.2018.05.014 |
[5] |
LIU Y J, ZHANG J K, YAN W J, et al. A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition[J]. IEEE Transactions on Affective Computing, 2016, 7(4):299-310.
doi: 10.1109/T-AFFC.5165369 |
[6] | LI Q Y, YU J, KURIHARA T, et al. Micro-Expression Analysis by Fusing Deep Convolutional Neural Network and Optical Flow[C]//Proceedings of the 2018 5th International Conference on Control,Decision and Information Technologies.Piscataway:IEEE, 2018:265-270. |
[7] | PENG M, WU Z, ZHANG Z H, et al. From Macro to Micro Expression Recognition:Deep Learning on Small Datasets Using Transfer Learning[C]//Proceedings of the 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition.Piscataway:IEEE, 2018:657-661. |
[8] |
WANG S J, LI B J, LIU Y J, et al. Micro-Expression Recognition with Small Sample Size by Transferring Long-Term Convolutional Neural Network[J]. Neurocomputing, 2018, 312:251-262.
doi: 10.1016/j.neucom.2018.05.107 |
[9] | KIM D H, BADDAR W J, RO Y M. Micro-expression Recognition with Expression-State Constrained Spatio-Temporal Feature Representations[C]//Proceedings of the 2016 ACM Multimedia Conference.Amsterdam:ACM, 2016:382-386. |
[10] |
KIM D H, BADDAR W, JANG J, et al. Multi-Objective Based Spatio-Temporal Feature Representation Learning Robust to Expression Intensity Variations for Facial Expression Recognition[J]. IEEE Transactions on Affective Computing, 2019, 10(2):223-236.
doi: 10.1109/T-AFFC.5165369 |
[11] | KHOR H Q, SEE J, PHAN R C W, et al. Enriched Long-term Recurrent Convolutional Network for Facial Micro-Expression Recognition[C]//Proceedings of the 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition.Piscataway:IEEE, 2018:667-674. |
[12] |
FRANTZIDIS C A, BRATSAS C, PAPADELIS C L, et al. Toward Emotion Aware Computing:an Integrated Approach Using Multichannel Neurophysiological Recordings and Affective Visual Stimuli[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(3):589-597.
doi: 10.1109/TITB.2010.2041553 |
[13] |
KHEZRI M, FIROOZABADI M, SHARAFAT A R. Reliable Emotion Recognition System Based on Dynamic Adaptive Fusion of Forehead Biopotentials and Physiological Signals[J]. Computer Methods and Programs in Biomedicine, 2015, 122(2):149-164.
doi: 10.1016/j.cmpb.2015.07.006 |
[14] |
TORRES-VALENCIA C, ALVAREZ-LOPEZ M, OROZCO-GUTIERREZ A. SVM-Based Feature Selection Methods for Emotion Recognition from Multimodal Data[J]. Journal on Multimodal User Interfaces, 2017, 11(1):9-23.
doi: 10.1007/s12193-016-0222-y |
[15] |
DUC B, BIGUN E S, BIGUN J, et al. Fusion of Audio and Video Information for Multi Modal Person Authentication[J]. Pattern Recognition Letters, 1997, 18(9):835-843.
doi: 10.1016/S0167-8655(97)00071-8 |
[16] |
BAILENSON J N, PONTIKAKIS E D, MAUSS I B, et al. Real-Time Classification of Evoked Emotions Using Facial Feature Tracking and Physiological Responses[J]. International Journal of Human Computer Studies, 2008, 66(5):303-317.
doi: 10.1016/j.ijhcs.2007.10.011 |
[17] | TRIPATHI S, BEIGI H. Multi-modal Emotion Recognition on IEMOCAP Dataset Using Deep Learning[J/OL].[2020-03-20].https://arxiv.org/pdf/1804.05788.pdf . |
[18] | ZHANG D, WU L, LI S, et al. Multi-Modal Language Analysis with Hierarchical Interaction-Level and Selection-Level Attentions[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo.Piscataway:IEEE Computer Society, 2019:724-729. |
[19] |
VIOLA P, JONES M. Robust Real-Time Object Detection[J]. International Journal of Computer Vision, 2001, 57:137-154.
doi: 10.1023/B:VISI.0000013087.49260.fb |
[20] |
LIBERZON D, TEMPO R. Common Lyapunov Functions and Gradient Algorithms[J]. IEEE Transactions on Automatic Control, 2004, 49(6):990-994.
doi: 10.1109/TAC.2004.829632 |
[21] |
COSTA M, GOLDBERGER A, PENG C K. Multiscale Entropy Analysis of Biological Signals[J]. Physical Review E, 2005, 71(2):21906.
doi: 10.1103/PhysRevE.71.021906 |
[22] | NITISH S, HINTON G, KRIZHEVSKY A, et al. Dropout:a Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. |
[23] |
HUANG X H, ZHAO G Y, HONG X P, et al. Spontaneous Facial Micro-Expression Analysis Using Spatiotemporal Completed Local Quantized Patterns[J]. Neurocomputing, 2016, 175:564-578.
doi: 10.1016/j.neucom.2015.10.096 |
[24] |
LI J, WANG Y D, JOHN S, et al. Micro-Expression Recognition Based on 3D Flow Convolutional Neural Network[J]. Pattern Analysis and Applications, 2019, 22(4):1331-1339.
doi: 10.1007/s10044-018-0757-5 |
[25] |
LIU Y J, ZHANG J K, YAN W J, et al. A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition[J]. IEEE Transactions on Affective Computing, 2016, 7(4):299-310.
doi: 10.1109/T-AFFC.5165369 |
[1] | QU Jiahui, HE Jie, DONG Wenqian, LI Yunsong, ZHANG Tongzhen, YANG Yufei. Change detection method based on multi-scale and multi-resolution information fusion [J]. Journal of Xidian University, 2025, 52(1): 105-116. |
[2] | KONG Fanqiang, YU Shengjie, WANG Kun, FANG Xu, LV Zhijie. Hyperspectral image unmixing method based on convolutional recurrent neural networks [J]. Journal of Xidian University, 2025, 52(1): 142-151. |
[3] | LI Linke, CHEN Jie, LIU Jun. Improved schemes and applications of the neural network differential distinguisher [J]. Journal of Xidian University, 2025, 52(1): 196-214. |
[4] | WANG Danyang, PIAO Chunying, LIU Qi, GUAN Lei, LI Zan. CTS features based electromagnetic interference identification at radio observatory site [J]. Journal of Xidian University, 2025, 52(1): 80-93. |
[5] | WANG Yulai, LIAO Xiaomin, HE Haiguang, YE Guojun. Knowledge graph assisted spectrum resource optimization algorithm for UAVs [J]. Journal of Xidian University, 2024, 51(5): 58-70. |
[6] | LI Xiaohan, YANG Yanbo, ZHANG Jiawei, LI Baoshan, MA Jianfeng. Graph neural network vulnerability detection for ethernet smart contracts [J]. Journal of Xidian University, 2024, 51(4): 139-150. |
[7] | ZHANG Xiaohong, XIANG Shijun, HUANG Hongbin. Hiding images in audio based on invertible neural networks [J]. Journal of Xidian University, 2024, 51(4): 226-238. |
[8] | GONG Junyang, FU Weihong, FANG Houzhang. Research on lightweight and feature enhancement of SAR image ship targets detection [J]. Journal of Xidian University, 2024, 51(2): 96-106. |
[9] | ZHONG Hao, BIAN Shan, WANG Chuntao. Real world image tampering localization combining the self-attention mechanism and convolutional neural networks [J]. Journal of Xidian University, 2024, 51(1): 135-146. |
[10] | ZHANG Xinyu, LIANG Yu, ZHANG Wei. Real-time smoke segmentation algorithm combining global and local information [J]. Journal of Xidian University, 2024, 51(1): 147-156. |
[11] | SHEN Lu, SU Hongtao, WANG Jin, MAO Zhi, JING Xinchen, LI Ze. Attention autocorrelation mechanism-based residual clutter suppression method [J]. Journal of Xidian University, 2024, 51(1): 41-51. |
[12] | HUANG Heyuan, MU Caihong, FANG Yunfei, LIU Yi. Graph convolution neural network for recommendation using graph negative sampling [J]. Journal of Xidian University, 2024, 51(1): 86-99. |
[13] | DU Mingyang, DU Meng, PAN Jifei, BI Daping. Generative adversarial model for radar intra-pulse signal denoising and recognition [J]. Journal of Xidian University, 2023, 50(6): 133-147. |
[14] | DONG Meng,GAO Yiming,PAN Weitao,QIU Zhiliang,YANG Jianlei,DI Zhixiong,ZHENG Ling. RELIC-GNN:an efficient state register identification algorithm [J]. Journal of Xidian University, 2023, 50(3): 142-150. |
[15] | ZHANG Zehuan, LIU Qiang, GUO Difei. High efficient framework for large-scale zero-shot image recognition [J]. Journal of Xidian University, 2022, 49(6): 103-110. |
|