[1] |
GUGULOTHU B, NAIK B R, BOODIDHA S. Modeling of Capacitive Coupled Interconnects for Crosstalk Analysis in High Speed VLSI Circuits[C]// International Conference on Communication and Signal Processing.Piscataway:IEEE, 2019:7-11.
|
[2] |
ULLAH M S, CHOWDHURY M H. Analytical Models of High Speed RLC Interconnect Delay for Complex and Real Poles[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(6):1-11.
|
[3] |
KUMARV R, KAUSHIK B K, PATNAIK A. An Accurate FDTD Model for Crosstalk Analysis of CMOS-Gate-Driven Coupled RLC Interconnects[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5):1185-1193.
doi: 10.1109/TEMC.2014.2305801
|
[4] |
KWOK H L. Maximizing the Value of Gate Capacitance in Field-Effect Devices Using an Organic Interface Layer[J]. Solid State Electronics, 2015, 114(12):163-166.
doi: 10.1016/j.sse.2015.09.014
|
[5] |
ZHANG P, FENG C, WANG H, et al. Analysis and Characterization of Capacitance Variation Using Capacitance Measurement Array[J]. IEEE Transactions on Semiconductor Manufacturing, 2014, 27(2):301-311.
doi: 10.1109/TSM.2014.2313373
|
[6] |
MUDAVATH R, NAIK B R. Estimation of Far End Crosstalk and Near End Crosstalk Noise with Mutually Coupled RLC Interconnect Models[C]// International Conference on Communication and Signal Processing.Piscataway:IEEE, 2018:182-185.
|
[7] |
MADHURI B D, SUNITHAMANI S. Crosstalk Noise Analysis of On-Chip Interconnects for Ternary Logic Applications Using FDTD[J]. Microelectronics Journal, 2019, 93(11):1-14.
|
[8] |
王亚飞, 赵彦晓, 杨玮, 等. 耦合传输线信道传输矩阵建模及串扰抵消效果分析[J]. 电子学报, 2019, 47(5):1129-1135.
|
|
WANG Yafei, ZHAO Yanxiao, YANG Wei, et al. Modeling of Transmission Matrix and Crosstalk Cancellation Method and Effect Analysis of Coupled Transmission Line[J]. Acta Electronica Sinica, 2019, 47(5):1129-1135.
|
[9] |
MAHDAVI Z, SHIRMOHAMMADI Z, MIREMADI S G. Crosstalk Modeling to Predict Channel Delay in Network-on-Chips[C]// IEEE International Symposium on On-line Testing & Robust System Design.Piscataway:IEEE, 2016:7-8.
|
[10] |
BALAN T S, DEVADAS B, KUMAR G. Suppression of Common and Differential Component of Crosstalk Coupling onto the Differential Line and Field analysis of the Crosstalk[C]// IEEE Symposium on Electromagnetic Compatibility,Signal Integrity and Power Integrity.Piscataway:IEEE, 2018:260-264.
|
[11] |
MUDAVATH R, NAIK B R. Analysis and Minimization of Crosstalk Noise in Copper Interconnects for High-Speed VLSI Circuits[J]. CSI Transactions on ICT, 2019, 7(2):81-86.
doi: 10.1007/s40012-019-00243-w
|
[12] |
AGRAWAL Y, CHANDEL R. Crosstalk Analysis of Current-Mode Signalling-Coupled RLC Interconnects Using FDTD Technique[J]. IETE Technical Review, 2016, 33(2):148-159.
doi: 10.1080/02564602.2015.1056258
|
[13] |
张岩, 杨银堂. 一种新型分布式互连线功耗优化模型[J]. 西安电子科技大学学报, 2014, 41(4):36-40.
|
|
ZHANG Yan, YANG Yintang. Novel Distributed Optimal Interconnection Power Model[J]. Journal of Xidian University, 2014, 41(4):36-40.
|
[14] |
续朋, 潘中良. 基于多线耦合的互连串扰延时模型[J]. 现代电子技术, 2018, 41(12):19-23.
|
|
XU Peng, PAN Zhongliang. An Interconnection Crosstalk Delay Model Based on Multi-Line Coupling[J]. Modern Electronics Technique, 2018, 41(12):19-23.
|
[15] |
董刚, 杨杨, 柴常春, 等. 考虑工艺波动的两相邻耦合RC互连串扰噪声估计[J]. 西安电子科技大学学报, 2010, 37(6):1082-1087.
|
|
DONG Gang, YANG Yang, CHAI Changchun, et al. Crosstalk Noise Estimation of Two Adjacent RC Interconnects with Process Variations[J]. Journal of Xidian University, 2010, 37(6):1082-1087.
|
[16] |
MACHA N K, GEEDIPALLY S, REPALLE B T, et al. Crosstalk Based Fine-Grained Reconfiguration Techniques for Polymorphic Circuits[C]// Proceedings of the 14th IEEE/ACM International Symposium on Nanoscale Architectures.Piscataway:IEEE, 2018:1-7.
|
[17] |
IQBAL M A, MACHA N K, REPALLE B T, et al. Designing Crosstalk Circuits at 7 nm[C]// IEEE International Conference on Rebooting Computing.Piscataway:IEEE, 2019:1-4.
|
[18] |
MIRMOTAHARI O, BERG Y. Ultra Low-Voltage Static Precharge NAND/NOR Gates[C]// IEEE International Nanoelectronics Conference.Piscataway:IEEE, 2014:1-5.
|
[19] |
DADASHI A, MIRMOTAHARI O, BERG Y. Domino Dual-Rail,High-Speed,NOR Logic,with 300 mV Supply in 90 nm CMOS Technology[C]// IEEE International Symposium on Consumer Electronics.Piscataway:IEEE, 2016:1-2.
|