[1] |
HEIDARI S, SIMMHAN Y, CALHEIROS R N, et al. Scalable Graph Processing Frameworks:A Taxonomy and Open Challenges[J]. ACM Computing Surveys, 2018, 51(3):1-53.
|
[2] |
NATIONAL RESEARCH COUNCIL, DIVISION ON ENGINEERING AND PHYSICAL SCIENCES, BOARD ON MATHEMATICAL SCIENCES AND THEIR APPLICATIONS, et al. Frontiers in Massive Data Analysis[R]. Washington: National Academies Press, 2013.
|
[3] |
马帅, 刘建伟, 左信, 等. 图神经网络综述[J]. 计算机研究与发展, 2022, 59(1):47-80.
|
|
MA Shuai, LIU Jianwei, ZUO Xin, et al. Survey on Graph Neural Network[J]. Chinese Journal of Computer Research and Development, 2022, 59(1):47-80.
|
[4] |
刘宇涵, 陈红, 刘艺璇, 等. 图数据上的隐私攻击与防御技术[J]. 计算机学报, 2022, 45(4):702-734.
|
|
LIU Yuhan, CHEN Hong, LIU Yixuan, et al. State-of-the-Art Privacy Attacks and Defenses on Graphs[J]. Chinese Journal of Computers, 2022, 45(4):702-734.
|
[5] |
DWORK C. Differential Privacy[C]// International Colloquium on Automata,Languages,and Programming.Berlin:Springer, 2006:1-12.
|
[6] |
徐花, 田有亮. 差分隐私下的权重社交网络隐私保护[J]. 西安电子科技大学学报, 2022, 49(1):17-25.
|
|
XU Hua, TIAN Youliang. Protection of Privacy of the Weighted Social Network under Differential Privacy[J]. Journal of Xidian University, 2022, 49(1):17-25.
|
[7] |
HAY M, LI C, MIKLAU G, et al. Accurate Estimation of the Degree Distribution of Private Networks[C]// 2009 Ninth IEEE International Conference on Data Mining.Piscataway:IEEE, 2009:169-178.
|
[8] |
KASIVISWANATHAN S P, NISSIM K, RASKHODNIKOVA S, et al. Analyzing Graphs with Node Differential Privacy[C]// The 10th Theory of Cryptography Conference.Berlin:Springer, 2013:457-476.
|
[9] |
DAY W Y, LI N, LYU M. Publishing Graph Degree Distribution with Node Differential Privacy[C]// The 2016 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2016:123-138.
|
[10] |
张宇轩, 魏江宏, 李霁, 等. 点差分隐私下图数据的度直方图发布方法[J]. 计算机研究与发展, 2019, 56(3):508-520.
|
|
ZHANG Yuxuan, WEI Jianghong, LI Ji, et al. Graph Degree Histogram Publication Method with Node-Differential Privacy[J]. Chinese Journal of Computer Research and Development, 2019, 56(3):508-520.
|
[11] |
AMIN F, MAJEED A, MATEEN A, et al. A Systematic Survey on the Recent Advancements in the Social Internet of Things[J]. IEEE Access, 2022, 10:63867-63884.
doi: 10.1109/ACCESS.2022.3183261
|
[12] |
WANG T, BLOCKI J, LI N, et al. Locally Differentially Private Protocols for Frequency Estimation[C]// 26th USENIX Security Symposium(USENIX Security 17).Berkeley:USENIX, 2017:729-745.
|
[13] |
叶青青, 孟小峰, 朱敏杰, 等. 本地化差分隐私研究综述[J]. 软件学报, 2018, 29(7):1981-2005.
|
|
YE Qingqing, MENG Xiaofeng, ZHU Minjie, et al. Survey on Local Differential Privacy[J]. Chinese Journal of Software, 2018, 29(7):1981-2005.
|
[14] |
QIN Z, YU T, YANG Y, et al. Generating Synthetic Decentralized Social Graphs with Local Differential Privacy[C]// 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017:425-438.
|
[15] |
WEI C, JI S, LIU C, et al. AsgLDP:Collecting and Generating Decentralized Attributed Graphs with Local Differential Privacy[J]. IEEE Transactions on Information Forensics and Security, 2020, 15:3239-3254.
doi: 10.1109/TIFS.10206
|
[16] |
LI Z, WANG T, LOPUHAÄ-ZWAKENBERG M, et al. Estimating Numerical Distributions under Local Differential Privacy[C]// The 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020:621-635.
|
[17] |
YE Q, HU H, AU M H, et al. LF-GDPR:A Framework for Estimating Graph Metrics with Local Differential Privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(10):4905-4920.
doi: 10.1109/TKDE.2020.3047124
|
[18] |
IMOLA J, MURAKAMI T, CHAUDHURI K. Locally Differentially Private Analysis of Graph Statistics[C]// The 30th USENIX Security Symposium(USENIX Security 21).Berkeley:USENIX, 2021:983-1000.
|
[19] |
BITTAU A, ERLINGSSON Ú, MANIATIS P, et al. Prochlo:Strong Privacy for Analytics in the Crowd[C]// The 26th Symposium on Operating Systems Principles. New York: ACM, 2017:441-459.
|
[20] |
BALLE B, BELL J, GASCÓN A, et al. The Privacy Blanket of the Shuffle Model[C]// Cryptology-CRYPTO 2019-39th Annual International Cryptology Conference.Berlin:Springer, 2019:638-667.
|
[21] |
WANG T, DING B, XU M, et al. Improving Utility and Security of the Shuffler-Based Differential Privacy[J]. VLDB Endowment, 2020, 13(13):3545-3558.
|
[22] |
LI X, LIU W, ZI Y, et al. DUMP:A Dummy-Point-Based Framework for Histogram Estimation in Shuffle Model[J]. CoRR abs, 2020:2009.13738.
|
[23] |
CHEU A. Differential Privacy in the Shuffle Model:A Survey of Separations[J]. CoRR abs, 2021:2107.11839.
|
[24] |
张啸剑, 徐雅鑫, 夏庆荣, 等. 基于混洗差分隐私的直方图发布方法[J]. 软件学报, 2022, 33(6):2348-2363.
|
|
ZHANG Xiaojian, XU Yaxin, XIA Qingrong, et al. Histogram Publication under Shuffled Differential Privacy[J]. Chinese Journal of Software, 2022, 33(6):2348-2363.
|
[25] |
刘艺菲, 王宁, 王志刚, 等. 混洗差分隐私下的多维类别数据的收集与分析[J]. 软件学报, 2022, 33(3):1093-1110.
|
|
LIU Yifei, WANG Ning, WANG Zhigang, et al. Collecting and Analyzing Multidimensional Categorical Data Under Shuffled Differential Privacy[J]. Chinese Journal of Software, 2022, 33(3):1093-1110.
|
[26] |
ZHANG S, NI W, FU N. Differentially Private Graph Publishing with Degree Distribution Preservation[J]. Computers & Security, 2021, 106(6):102285.
doi: 10.1016/j.cose.2021.102285
|
[27] |
IMOLA J, MURAKAMI T, CHAUDHURI K. Differentially Private Triangle and 4-Cycle Counting in the Shuffle Model[C]// The 2022 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2022:1505-1519.
|
[28] |
MCSHERRY F D. Privacy Integrated Queries:An Extensible Platform for Privacy-Preserving Data Analysis[C]// 2009 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2009:19-30.
|