[1] |
ROSENBERG L. Parametric Modeling of Sea Clutter Doppler Spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-9.
|
[2] |
刘俊, 刘瑜, 何友, 等. 杂波环境下基于全邻模糊聚类的联合概率数据互联算法[J]. 电子与信息学报, 2016, 38(6) :1438-1445.
|
|
LIU Jun, LIU Yu, HE You, et al. Joint Probabilistic Data Association Algorithm Based on All-Neighbor Fuzzy Clustering in Clutter[J]. Journal of Electronics & Information Technology, 2016, 38(6):1438-1445.
|
[3] |
段崇棣, 韩超垒, 杨志伟, 等. 一种杂波分类辅助的近海岸模糊杂波抑制方法[J]. 西安电子科技大学学报, 2021, 48(2):64-71.
|
|
DUAN Chongdi, HAN Chaolei, YANG Zhiwei, et al. Inshore Ambiguity Clutter Suppression Method Aided by Clutter Classification[J]. Journal of Xidian University, 2021, 48(2):64-71.
|
[4] |
LI H, REN J, HAN J, et al. Ground Clutter Suppression Method Based on FNN for Dual-Polarization Weather Radar[J]. The Journal of Engineering, 2019, 2019(19):6043-6047.
doi: 10.1049/tje2.v2019.19
|
[5] |
罗忠涛, 严美慧, 卢琨, 等. 超视距雷达海杂波与干扰信号的多域特征与海杂波检测[J]. 电子与信息学报, 2021, 43(3):580-588.
|
|
LUO Zhongtao, YAN Meihui, LU Kun, et al. The Characteristics of Sea-Clutter and Interferences in Various Domains and the Detection of Sea-Clutter for Over-The-Horizon Radar[J]. Journal of Electronics & Information Technology, 2021, 43(3):580-588.
|
[6] |
GU J, WANG Z, KUEN J, et al. Recent Advances in Convolutional Neural Networks[J]. Pattern recognition, 2018, 77:354-377.
doi: 10.1016/j.patcog.2017.10.013
|
[7] |
XU S, RU H, LI D, et al. Marine Radar Small Target Classification Based on Block-Whitened Time-Frequency Spectrogram and Pre-Trained CNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-11.
|
[8] |
BACHMANN S M. Phase-Based Clutter Identification in Spectra of Weather Radar Signals[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):487-491.
doi: 10.1109/LGRS.2008.922733
|
[9] |
RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill Education, 2014.
|
[10] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:6000-6010.
|
[11] |
DEVLIN J, CHANG M W, LEE K, et al. Bert:Pre-Training of Deep Bidirectional Transformers for Language Understanding(2018)[J/OL].[2018-10-11].https://arxiv.org/abs/1810.04805v2.
|
[12] |
MIKOLOV T, KOMBRINK S, BURGET L, et al. Extensions of Recurrent Neural Network Language Model[C]//IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE, 2011:5528-5531.
|
[13] |
LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553):436-444.
doi: 10.1038/nature14539
|
[14] |
MAAS A L, HANNUN A Y, NG A Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models[C]//International Conference on Machine Learning. Atlanta:JMLR, 2013:1-6.
|
[15] |
GLOROT X, BORDES A, BENGIO Y. Deep Sparse Rectifier Neural Networks[J]. Journal of Machine Learning Research, 2011, 15:315-323.
|
[16] |
NING Q. On the Momentum Term in Gradient Descent Learning Algorithms[J]. Neural Network, 1999, 12(1):145-151.
doi: 10.1016/S0893-6080(98)00116-6
|
[17] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:Visual Explanations from Deep Networks via Gradient-Based Localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.
doi: 10.1007/s11263-019-01228-7
|