电子科技 ›› 2020, Vol. 33 ›› Issue (8): 1-9.doi: 10.16180/j.cnki.issn1007-7820.2020.08.001

• •    下一篇

视频图像中人脸自动检测与统计算法

杨思燕1,苗凯彬2,王锋2,苗启广2   

  1. 1.陕西广播电视大学 信息与智能技术学院,陕西 西安 710119
    2.西安电子科技大学 计算机科学与技术学院,陕西 西安 710071
  • 收稿日期:2020-04-06 出版日期:2020-08-15 发布日期:2020-08-24
  • 作者简介:杨思燕(1976-),女,副教授。研究方向:智能图像处理、智能算法、大数据分析等。|苗凯彬(1995-),男,硕士研究生。研究方向:计算机视觉。|王锋(1995-),男,硕士研究生。研究方向:计算机视觉,智能优化。|苗启广(1972-),男,教授。研究方向:计算机视觉,机器学习,大数据分析等。
  • 基金资助:
    国家重点研发计划(2018YFC0807500)

Design and Implementation of Automatic Face Detection and Statistics Software in Video Image

YANG Siyan1,MIAO Kaibin2,WANG Feng2,MIAO Qiguang2   

  1. 1. School of Information and Intelligence Technology, Shaanxi Radio & TV University, Xi’an 710119, China
    2. School of Computer Science and Technology, Xidian University, Xi’an 710071, China
  • Received:2020-04-06 Online:2020-08-15 Published:2020-08-24
  • Supported by:
    National Key R&D Program of China under Grant(2018YFC0807500)

摘要:

针对视频中人脸检测由于成像角度、天气状况、遮挡等因素造成检测准确率偏低以及深度学习模型计算复杂度高的问题,文中提出了一种基于椭圆肤色模型与AdaBoost的人脸检测算法。算法通过选取Haar-like特征作为弱分类器,以裁剪过的CAS_PEAL数据集中的人脸图像作为训练集,利用AdaBoost算法将多个弱分类器组合成一个强分类器,最后将若干强分类器以级联的结构组成最终的分类器模型。为解决将非人脸区域检测为人脸的问题,引入椭圆肤色模型,利用椭圆肤色模型对视频帧进行处理使得图像中与肤色相似的区域进入后续的人脸检测过程以降低误检率。实验结果表明,算法能以平均26 ms(单人脸视频)和平均34 ms(多人脸视频)的检测速度进行实时的人脸检测,且达到了87.2%的检测准确率,具有较大的应用推广价值。

关键词: AdaBoost算法, Haar-like特征, 积分模型图, 椭圆肤色模型, 弱分类器, 级联, 级联分类器, 肤色分割

Abstract:

Aiming at the problem of low detection accuracy and high computational complexity of deep learning models due to factors such as imaging angle, weather conditions, and occlusion in face detection in video, a face detection algorithm based on ellipse skin color model and AdaBoost was proposed. The algorithm selectd Haar-like features as weak classifiers, and used the face images in the cropped CAS_PEAL data set as the training set, and used the AdaBoost algorithm to combine multiple weak classifiers into a strong classifier. The cascaded structure constituted the final classifier model. In order to solve the problem of detecting non-face area as a human face, an ellipse skin color model was introduced, and the video frame was processed using the ellipse skin color model so that areas with similar skin color in the image enterd the subsequent face detection process to reduce the false detection rate. Experimental results showed that the algorithm could perform real-time face detection at an average detection speed of 26 ms (single face video) and an average of 34 ms (multi-face video), and achieved a detection accuracy of 87.2%, which had a large application promotion value.

Key words: AdaBoost algorithm, Haar-like feature, integration diagram, ellipse skin color model, weak classifier, cascade, cascade classifier, skin color segmentation

中图分类号: 

  • TN948.64