[1] |
杨晓丽, 刘博涛, 赵哲, 等. 基于视觉与激光雷达数据融合的前车识别研究[J]. 汽车实用技术, 2020, 45(18):22-24.
|
|
Yang Xiaoli, Liu Botao, Zhao Zhe, et al. Front vehicle recognition based on fusion of vision and lidar data[J]. Automobile Applied Technology, 2020, 45(18):22-24.
|
[2] |
姚启才, 汪地, 廖茂生. 基于机器视觉的机械臂智能抓取系统设计[J]. 计量与测试技术, 2020, 47(10):28-33.
|
|
Yao Qicai, Wang Di, Liao Maosheng. Intelligent grasping system design of robot arm based on machine vision[J]. Metrology & Measurement Technique, 2020, 47(10):28-33.
|
[3] |
张达峰, 刘宇红, 张荣芬. 基于深度学习的智能辅助驾驶系统[J]. 电子科技, 2018, 31(10):60-63.
|
|
Zhang Dafeng, Liu Yuhong, Zhang Rongfen. Intelligent assistant driving system based on deep learning[J]. Electronic Science and Technology, 2018, 31(10):60-63.
|
[4] |
陶映帆, 胡鹏飞, 杨文明. 智能家居中的计算机视觉技术[J]. 人工智能, 2020(5):30-38.
|
|
Tao Yingfan, Hu Pengfei, Yang Wenming. Computer vision technology in smart home[J]. AI-View, 2020(5):30-38.
|
[5] |
胡振寰. 基于深度学习算法的遮挡行人检测[D]. 柳州: 广西科技大学, 2019.
|
|
Hu Zhenhuan. Occlusion pedestrian detection based on deep learning algorithm[D]. Liuzhou: Guangxi University of Science and Technology, 2019.
|
[6] |
周文凯, 韩芳, 孔维健. 基于Faster-RCNN的极验点选式验证码识别[J]. 电子科技, 2019, 32(9):42-45.
|
|
Zhou Wenkai, Han Fang, Kong Weijian. Point-selective geetest CAPTCHA recognition based on Faster-RCNN[J]. Electronic Science and Technology, 2019, 32(9):42-45.
|
[7] |
李光曜. 基于深度学习的遥感图像目标检测方法研究[D]. 石家庄: 石家庄铁道大学, 2019.
|
|
Li Guangyao. Target detection method of remote sensing image based on deep learning[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019.
|
[8] |
杨璐. 基于SSD的人脸检测算法研究[D]. 镇江: 江苏科技大学, 2019.
|
|
Yang Lu. Research on face detection algorithm based on SSD algorithm[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
|
[9] |
吴华运, 任德均, 付磊, 等. 基于改进型SSD算法的空瓶表面缺陷检测[J]. 计算机与现代化, 2020(4):121-126.
|
|
Wu Huayun, Ren Dejun, Fu Lei, et al. Surface defect detection of empty bottles based on improved SSD algorithm[J]. Computer and Modernization, 2020(4):121-126.
|
[10] |
刘学, 李范鸣, 刘士建. 改进的SSD红外图像行人检测算法[C]. 上海: 上海市红外与遥感学会, 2019.
|
|
Liu Xue, LiFanming, LiuShijian. Improved SSD infrared image pedestrian detection algorithm[C]. Shanghai: Proceedings of the Shanghai Institute of Infrared and Remote Sensing, 2019.
|
[11] |
苟先太, 黄巍, 刘琪芬. 基于改进SSD模型的牛脸检测[J]. 计算机工程与设计, 2020, 41(3):833-837.
|
|
Gou Xiantai, Huang Wei, Liu Qifen. Cattle face detection based on improved SSD model[J]. Computer Engineering and Design, 2020, 41(3):833-837.
|
[12] |
Zhai S, Shang D, Wang S, et al. DF-SSD: An improved SSD object detection algorithm based on densenet and feature fusion[J]. IEEE Access, 2020(8):24344-24357.
|
[13] |
Li Y L, Wang S. HAR-Net: Joint learning of hybrid attention for single-stage object detection[J]. IEEE Transactions on Image Processing, 2020, 29(11):3092-3103.
doi: 10.1109/TIP.2019.2957850
|
[14] |
沈新烽, 姜平, 周根荣. 改进SSD算法在零部件检测中的应用研究[J]. 计算机工程与应用, 2020, 56(12):1-10.
|
|
Shen Xinfeng, Jiang Ping, Zhou Genrong. Application of improved SSD algorithm in parts detection[J]. Computer Engineering and Applications, 2020, 56(12):1-10.
|
[15] |
Kanimozhi S, Gayathri G, Mala T. Multiple real-time object identification using Single shot multi-box detection[C]. Chennai: Proceedings of the 2019 International Conference on Computational Intelligence in Data Science, 2019.
|
[16] |
郭川磊. 基于转置卷积操作改进的SSD目标检测算法研究[D]. 成都: 成都信息工程大学, 2019.
|
|
Guo Chuanlei. Research on improved SSD target detection algorithm based on transposed convolution operation[D]. Chengdu: Chengdu University of Information Technology, 2019.
|
[17] |
焦鑫, 杨伟东, 刘全周, 等. 用于ADAS实时目标车辆检测的改进SSD算法[J]. 汽车安全与节能学报, 2020, 11(3):337-344.
|
|
Jiao Xin, Yang Weidong, Liu Quanzhou, et al. Improved SSD algorithm for real-time target vehicle detection in ADAS[J]. Journal of Automotive Safety and Energy, 2020, 11(3):337-344.
|
[18] |
黎阳, 沈烨, 刘敏, 等. 融合运动信息与表观信息的多目标跟踪算法[J]. 电子科技, 2020, 33(9):21-24.
|
|
Li Yang, Shen Ye, Liu Min, et al. Multi-target tracking algorithm by combining motion information and apparent information[J]. Electronic Science and Technology, 2020, 33(9):21-24.
|
[19] |
He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C]. Amsterdam: European Conference on Computer Vision, 2016.
|
[20] |
Huang G, Liu Z, Laurens V, et al. Densely connected convolutional networks[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[21] |
Chen Y, Li J, Xiao H, et al. Dual path networks[C]. New York: Proceedings of the Thirty-first International Conference on Neural Information Processing Systems, 2017.
|