[1] |
黄泽. 树与单圈图优雅标号算法的新型图形密码研究[J]. 电子科技, 2019, 32(3):77-81.
|
|
Huang Ze. New type of graphical password study based on the elegant label algorithm of tree and unicyclic graph[J]. Electronic Science and Technology, 2019, 32(3):77-81.
|
[2] |
郑志静, 李旭伟. 利用泛化洛伦茨方程进行消息加密和密钥分发[J]. 计算机工程与设计, 2017, 38(12):3247-3305.
|
|
Zheng Zhijing, Li Xuwei. Message encryption and key distribution using generalized Lorenz equation[J]. Computer Engineering and Design, 2017, 38(12):3247-3305.
|
[3] |
龚文杰. RSA算法的FPGA快速实现[D]. 西安: 西安电子科技大学, 2016.
|
|
Gong Wenjie. FPGA fast implementation of RSA algorithm[D]. Xi'an: Xidian University, 2016.
|
[4] |
Montgomery P L. Modular multiplication without trial division[J]. Mathematics of Computation, 1985, 44(170):519-521.
doi: 10.1090/S0025-5718-1985-0777282-X
|
[5] |
李泽祥. RSA软硬件协同设计的研究与实现[D]. 广州: 华南理工大学, 2018.
|
|
Li Zexiang. Research and implementation of RSA hardware/software design[D]. Guangzhou: South China University of Technology, 2018.
|
[6] |
Liu R, Li S. A design and implementation of Montgomery modular multiplier[C]. Sapporo: Proceedings of the IEEE International Symposium on Circuits and Systems, 2019.
|
[7] |
Gu Z, Li S. A division-free toom-cook multiplication-based montgomery modular multiplication[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 66(8):1401-1405.
doi: 10.1109/TCSII.2018.2886962
|
[8] |
Ding J, Li S. A low-latency and low-cost montgomery modular multiplier based on NLP multiplication[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 67(7):1319-1323.
doi: 10.1109/TCSII.2019.2932328
|
[9] |
Pan J S, Song P, Yang C S. Efficient digit-serial modular multiplication algorithm on FPGA[J]. IET Circuits, Devices & Systems, 2018, 12(5):662-668.
doi: 10.1049/iet-cds.2017.0300
|
[10] |
Mukhopadhyay D, Roy D B. Revisiting FPGA implementation of montgomery multiplier in redundant number system for efficient ECC application in GF(p)[C]. Dublin: Proceedings of the Twenty-eighth International Conference on Field Programmable Logic and Applications, 2018.
|
[11] |
Roy D B, Mukhopadhyay D. High-speed implementation of ECC scalar multiplication in GF(p) for generic montgomery curves[J]. IEEE Transactions on Very Large Scale Integration Systems, 2019, 27(2):1587-1600.
doi: 10.1109/TVLSI.2019.2905899
|
[12] |
Fatemi S, Zare M, Khavari A F, et al. Efficient implementation of digit-serial montgomery modular multiplier architecture[J]. IET Circuits, Devices & Systems, 2019, 13(7):942-949.
doi: 10.1049/iet-cds.2018.5182
|
[13] |
Rezai A, Keshavarzi P. High-throughput modular multiplication and exponentiation algorithms using multibit-scan-multibit-shift technique[J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 23(9):1710-1719.
doi: 10.1109/TVLSI.2014.2355854
|
[14] |
何安平, 郭慧波, 冯志华, 等. 基于异步电路设计的RSA算法加密芯片[J]. 计算机工程与设计, 2019, 40(4):906-913.
|
|
He Anping, Guo Huibo, Feng Zhihua, et al. RSA algorithm encryption chip based on asynchronous circuit design[J]. Computer Engineering and Design, 2019, 40(4):906-913.
|
[15] |
Walter C D. Montgomery exponentiation needs no final subtractions[J]. Electronics Letters, 1999, 35(21): 1831-1832.
doi: 10.1049/el:19991230
|
[16] |
Dai W, Chen D D, Cheung R C C, et al. Area-time efficient architecture of FFT-based montgomery multiplication[J]. IEEE Transactions on Computers, 2016, 66(3):375-388.
doi: 10.1109/TC.2016.2601334
|
[17] |
Erdem S S, Yanlk T, Çelebi A. A general digit-serial architecture for montgomery modular multiplication[J]. IEEE Transactions on Very Large Scale Integration Systems, 2017, 25(5):1658-1668.
doi: 10.1109/TVLSI.2017.2652979
|
[18] |
Chen D D, Yao G X, Cheung R C C, et al. Parameter space for the architecture of FFT-based montgomery modular multiplication[J]. IEEE Transactions on Computers, 2016, 65(1):147-160.
doi: 10.1109/TC.2015.2417553
|