电子科技 ›› 2022, Vol. 35 ›› Issue (8): 7-13.doi: 10.16180/j.cnki.issn1007-7820.2022.08.002

• • 上一篇    下一篇

基于深度时序卷积网络的功率放大器行为建模方法

周凡,赵轩,邵杰   

  1. 南京航空航天大学 电子信息工程学院,江苏 南京 211106
  • 收稿日期:2021-03-12 出版日期:2022-08-15 发布日期:2022-08-10
  • 作者简介:周凡(1995-),男,硕士研究生。研究方向:信号检测与处理、深度学习。|赵轩(1996-),男,硕士研究生。研究方向:目标检测、抓取框检测。|邵杰(1963-),男,博士,副教授。研究方向:信号检测与处理、数字系统设计与计算机应用。
  • 基金资助:
    教育部重点实验室开放研究基金(UASP2001)

Power Amplifier Behavior Modeling Based on Deep Temporal Convolutional Network

ZHOU Fan,ZHAO Xuan,SHAO Jie   

  1. College of Electronic Information Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
  • Received:2021-03-12 Online:2022-08-15 Published:2022-08-10
  • Supported by:
    Open Research Fund of Key Laboratory of Ministry of Education(UASP2001)

摘要:

功率放大器作为辐射源发射机的核心部件,其工作行为具有高非线性、强记忆性等特点,导致功率放大器的行为建模难度颇高。针对该问题,文中提出了一种基于深度时序卷积网络的功率放大器行为建模方法。该方法采用的神经网络模型由多个多维时序卷积块构成,每个时序卷积块由数个用于增加网络感受野的因果膨胀卷积以及用于提高梯度反馈效率的残差结构组成。模型通过并行卷积操作,克服了传统卷积网络无法处理可变长序列的弊端,在保留功率放大器记忆特性的同时,提高了行为建模的效率。针对实测数据的行为建模结果表明,相比于现有的Volterra级数以及循环神经网络建模方法,文中提出的方法可显著提升行为建模精度,且在行为建模效率方面,相较于循环神经网络建模方法,将实现时间降低了一个数量级。

关键词: 辐射源, 功率放大器, 行为建模, 时序卷积网络, 残差结构, 因果卷积, 膨胀卷积, 深度网络

Abstract:

As the core component of the radiation source transmitter, the power amplifier has the characteristics of high non-linearity and strong memory, which makes it difficult to model the behavior of the power amplifier. In view of this problem, this study proposes a method for behavior modeling of power amplifiers based on Deep TCN. The neural network model adopted by this method is composed of multiple multi-dimensional time series convolution blocks, and each time series convolution block is composed of several causal dilation convolutions used to increase the receptive field of the network and residual structures used to improve the efficiency of gradient feedback. Through the parallel convolution operation, the model overcomes the disadvantages of traditional convolutional networks that cannot handle variable-length sequences, and improves the efficiency of behavioral modeling while preserving the memory effect of power amplifiers. The behavior modeling results of measured data show that compared with the existing Volterra series and recurrent neural network modeling methods, the proposed method can significantly improve the accuracy of behavior modeling. Compared with the recurrent neural network modeling method, the proposed method reduces the implementation time by an order of magnitude in terms of the efficiency of behavior modeling.

Key words: radiation source, power amplifier, behavior modeling, temporal convolutional network, residual structure, causal convolution, dilated convolution, deep network

中图分类号: 

  • TP183