[1] |
Raoelison R N, Buiron N, Rachik M, et al. Efficient welding conditions in magnetic pulse welding process[J]. Journal of Manufacturing Processes, 2012, 14(3):372-377.
doi: 10.1016/j.jmapro.2012.04.001
|
[2] |
金庆勉, 孔祥伟, 金志博, 等. 高强钢T型接头MAG焊接温度场研究[J]. 热加工工艺, 2018, 47(9):180-183.
|
|
Jin Qingmian, Kong Xiangwei, Jin Zhibo, et al. Study on MAG welding temperature field of high strength steel T-joint[J]. Hot Working Technology, 2018, 47(9):180-183.
|
[3] |
Wang F, Cressault Y, Teulet P, et al. Spectroscopic investigation of partial LTE assumption and plasma temperature field in pulsed MAG arcs[J]. Journal of Physics, 2018, 51(25):422-435.
|
[4] |
Li W, Yu R, Huang D, et al. Numerical simulation of multi-layer rotating arc narrow gap MAG welding for medium steel plate[J]. Journal of Manufacturing Processes, 2019, 45(9):460-471.
doi: 10.1016/j.jmapro.2019.07.035
|
[5] |
Tian Z F, Li J F, Chen Z X, et al. Effect of process conditions on residual stress in laser-MAG welding of high strength steel[J]. Key Engineering Materials, 2020, 83(1):71-77.
|
[6] |
Zhang F, Liu S, Liu F, et al. Effect of groove angle and heat treatment on the mechanical properties of high-strength steel hybrid laser-MAG welding joints[J]. Materials Research Express, 2020, 6(12):1265-1277.
|
[7] |
Xiong L, Cheng J, Chuang A, et al. Synchrotron experiment and simulation studies of magnesium-steel interface manufactured by impact welding[J]. Materials Science and Engineering:A, 2021(1):67-80.
|
[8] |
Lee J Y, Ko S H, Farson D F, et al. Mechanism of keyhole formation and stability in stationary laser welding[J]. Journal of Physics D:Applied Physics, 2002, 35(13):1570-1582.
doi: 10.1088/0022-3727/35/13/320
|
[9] |
Lindgren L E, Runnemalm H, Näsström M O. Simulation of multipass welding of a thick plate[J]. International Journal for Numerical Methods in Engineering, 1999, 44(9):1301-1316.
doi: 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K
|
[10] |
温永彬, 巩建鸣, 耿鲁阳, 等. 13MnNiMoNbR厚板焊接温度场数值模拟[J]. 电焊机, 2011, 41(5):80-83.
|
|
Wen Yongbin, Gong Jianming, Geng Luyang, et al. Numerical simulation of welding temperature field in 13MnNiMoR thick plate[J]. Electric Welding Machine, 2011, 41(5):80-83.
|
[11] |
刘有艳, 温永彬. 13MnNiMoNbR特厚板焊接温度场的数值模拟[J]. 电焊机, 2014, 44(5):195-198.
|
|
Liu Youyan, Wen Yongbin. Numerical simulation of welding temperature field in 13MnNiMoNbR super thick plate[J]. Electric Welding Machine, 2014, 44(5):195-198.
|
[12] |
Salimi S, Bahemmat P, Haghpanahi M. A 3D transient analytical solution to the temperature field during dissimilar welding processes[J]. International Journal of Mechanical Sciences, 2014, 79(9):66-74.
doi: 10.1016/j.ijmecsci.2013.11.015
|
[13] |
Gao X D, Wang L, Chen Z Q, et al. Process stability analysis and weld formation evaluation during disk laser-mag hybrid welding[J]. Optics and Lasers in Engineering, 2020, 124(1):1-13.
|
[14] |
Liu G, Ma L N, Ma Z D, et al. Effects of welding speed and post-weld hot rolling on microstructure and mechanical properties of friction stir-welded AZ31 magnesium alloy[J]. Acta Metallurgica Sinica(English Letters), 2018, 31(8):853-864.
|
[15] |
Okano S, Mochizuki M. Engineering model of metal active gas welding process for efficient distortion analysis[J]. ISIJ International, 2017, 57(3):511-516.
doi: 10.2355/isijinternational.ISIJINT-2016-394
|
[16] |
Zielinska S, Pellerin S, Valensi F, et al. Gas influence on the arc shape in MIG-MAG welding[J]. The European Physical Journal Applied Physics, 2008, 43(1):111-122.
doi: 10.1051/epjap:2008106
|
[17] |
李雪峰. 基于梯形加减速和数字交叉差补控制的光热跟踪系统[J]. 电子设计工程, 2020, 28(24):188-193.
|
|
Li Xuefeng. Photothermal tracking system based on trapezoidal acceleration &deceleration and digital cross complement[J]. Electronic Design Engineering, 2020, 28(24):188-193.
|