电子科技 ›› 2024, Vol. 37 ›› Issue (2): 30-35.doi: 10.16180/j.cnki.issn1007-7820.2024.02.005
姜松,何园园
收稿日期:
2022-10-10
出版日期:
2024-02-15
发布日期:
2024-01-18
作者简介:
姜松(1989-),男,博士,副教授。研究方向:脉冲功率与等离子体应用。|何园园(1996-),男,硕士研究生。研究方向:高压脉冲电源、介质阻挡放电产生臭氧。
基金资助:
JIANG Song,HE Yuanyuan
Received:
2022-10-10
Online:
2024-02-15
Published:
2024-01-18
Supported by:
摘要:
为提高介质阻挡放电产生臭氧的浓度和产量,文中研究了不同方波脉冲模式下介质阻挡放电产生臭氧的特性。文中对系统放电特性进行分析,计算系统放电功率,研究其在不同极性、不同频率和不同脉宽下产生臭氧的浓度和产量,并对其产生的结果进行了分析和讨论。研究结果表明,在施加正负极性方波脉冲时,臭氧浓度最高,为8.8 g·Nm-3;在施加正极性方波脉冲时,臭氧产量最高,为55 g·kWh-1。随着频率的增加,臭氧浓度和产量均呈现先增加后下降趋势。在放电频率为1 kHz时,臭氧浓度最大;在放电频率为1.5 kHz时,臭氧产量最高。在其它参数一定的情况下,随着脉宽的增加,臭氧浓度缓慢增加,臭氧的产量基本无变化。
中图分类号:
姜松,何园园. 不同方波脉冲模式下介质阻挡放电产生臭氧的研究[J]. 电子科技, 2024, 37(2): 30-35.
JIANG Song,HE Yuanyuan. Ozone Generation by Dielectric Barrier Discharge under Different Square Wave Pulse Modes[J]. Electronic Science and Technology, 2024, 37(2): 30-35.
[1] | 赵荣欣, 戴曙光. 基于Android与PIC的空气净化器控制系统设计[J]. 电子科技, 2017, 30(6):135-137. |
Zhao Rongxin, Dai Shuguang. Air purifier control system based on Android and PIC[J]. Electronic Science and Technology, 2017, 30(6):135-137. | |
[2] | 陈蕊, 刘春, 杨旭, 等. 臭氧氧化法预处理工业废水研究进展[J]. 应用化工, 2022, 51(4):1168-1173. |
Chen Rui, Liu Chun, Yang Xu, et al. Research progress on pretreatment of industrial wastewater by ozonation[J]. Applied Chemical Industry, 2022, 51(4):1168-1173. | |
[3] | Jodzis S. Effect of silica packing on ozone synthesis from oxygen-nitrogen mixtures[J]. Ozone Science & Engineering, 2003, 25(1):63-72. |
[4] |
Nakata Y, Mabuchi R, Teranishi K, et al. Effect of small-diameter coaxial reactors on ozone production using nanosecond pulsed power[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4):1146-1152.
doi: 10.1109/TDEI.2013.6571429 |
[5] | Yuan D K, Xie S R Ding C, et al. The benefits of small quantities of nitrogen in the oxygen feed toozone generators[J]. Ozone Science & Engineering, 2018, 40(4):313-320. |
[6] |
Yao S L, Wu Z L, Han J Y, et al. Study of ozone generation in an atmospheric dielectric barrier discharge reactor[J]. Journal of Electrostatics, 2015, 75(3):35-42.
doi: 10.1016/j.elstat.2015.03.001 |
[7] |
Mankelevich Y A, Poroykov A Y, Rakhimova T V, et al. Ozone production and losses in N2/O2 mixt-ures in an ozone generator[J]. Russian Journal of Physical Chemistry A, 2016, 90(9):1896-1902.
doi: 10.1134/S0036024416090181 |
[8] | Liang C H, Lee M H, Chang B M. Enhancement of energy yield for ozone production via packed-bed reactors[J]. Ozone Science & Engineering, 2006, 28(2):111-118. |
[9] | Wei L, Xu M, Zhang Y. Energyconversion and temperature dependence in ozone generator using pulsed discharge in oxygen[J]. Ozone Science & Engineering, 2016, 39(1):33-43. |
[10] |
Chen H L, Lee H M, Chen S H. Review of packed-bed plasma reactor for ozone generation and airpollution control[J]. Industrial & Engineering Chemistry Research, 2008, 47(7):2122-2130.
doi: 10.1021/ie071411s |
[11] | Shao T, Long K H, Zhang C, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure[J]. Journal of Physics D Applied Physics, 2008, 41(21):1-8. |
[12] | Yuan D K, Wang Z H, Ding C, et al. Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: The influence of gas pressure[J]. Journal of Physics D Applied Physics, 2016, 49(45):1-12. |
[13] | Du Z H. Characteristic research on the generation of ozone using dielectric barrier discharge[J]. Safety and Environmental Engineering, 2012, 19(5):37-41. |
[14] |
Yuan J K, Wang Z H, He Y, et al. Ozone productionwith dielectric barrier discharge from air:The influence of pulse polarity[J]. Ozone Science and Engineering, 2018, 40(6):494-502.
doi: 10.1080/01919512.2018.1476127 |
[15] |
Yuan D K, Ding C, He Y, et al. Characteristics of dielectric barrier discharge ozone synthesis for different pulse modes[J]. Plasma Chemistry and Plasma Processing, 2017, 37(4):1165-1173.
doi: 10.1007/s11090-017-9793-y |
[16] | 魏俊, 钱树楼, 王城, 等. 填充床介质阻挡放电臭氧发生器的实验研究[J]. 高电压技术, 2017, 43(8):2696-2701. |
Wei Jun, Qian Shulou, Wang Cheng, et al. Experimental study of packed-bed dielectric barrier discharge applied on ozone reactor[J]. High Voltage Engineering, 2017, 43(8):2696-2701. | |
[17] |
钱树楼, 魏俊, 秦豫川, 等. 颗粒填充对介质阻挡放电制臭氧性能的影响[J]. 核聚变与等离子体物理, 2017, 37(3):366-372.
doi: 10.16568/j.0254-6086.201703021 |
Qian Shulou, Wei Jun, Qin Yuchuan, et al. Effect of particle packed on properties of synthetic ozone by dielectric barrier discharge[J]. Nuclear Fusion and Plasma Physics, 2017, 37(3):366-372.
doi: 10.16568/j.0254-6086.201703021 |
|
[18] | 冯卫强, 刘振, 刘百良, 等. 双极性脉冲臭氧发生的实验研究[J]. 高电压技术, 2018, 44(9):3083-3088. |
Feng Weiqiang, Liu Zhen, Liu Bailiang, et al. Experimental study of ozone generation by using bipolar pulse power supply[J]. High Voltage Engineering, 2018, 44(9):3083-3088. | |
[19] | Jiang S, Huang L F, Wu Z H, et al. Research on the characteristics of atmospheric air dielectric barrier discharge under different square wave pulse polarities[J]. Plasma Science and Technology, 2021, 23(12):1-10. |
[1] | 丁凯,饶俊峰. MHz高压脉冲电源的研究[J]. 电子科技, 2024, 37(2): 69-75. |
[2] | 傅一钊,李孜. 多级谐振充电的Marx脉冲源研究[J]. 电子科技, 2024, 37(1): 9-16. |
[3] | 兰唯,韩延喆,扈啸. 基于FPGA的千兆以太网端口通信设计[J]. 电子科技, 2024, 37(1): 48-54. |
[4] | 巫付专,向乃皇,周元浩,陈蒙娜. DC-DC变换补偿网络PI近似工程设计[J]. 电子科技, 2023, 36(5): 16-22. |
[5] | 徐邦贤,刘晓波,韩祥民,邱知,唐辉,范津玮. 耦合电感型Zeta变换器的参数优化方法[J]. 电子科技, 2023, 36(1): 88-94. |
[6] | 金爱娟,邵飞旋,严紫光. 基于自适应模糊神经网络的感应电机矢量控制[J]. 电子科技, 2022, 35(9): 65-73. |
[7] | 王瑞鑫,姚磊. 串联补偿型饱和铁心故障限流器气隙结构的优化设计[J]. 电子科技, 2022, 35(8): 21-26. |
[8] | 郑征,姜鹏飞,张国澎,李子汉. 隔离型交-直流固态变压器前后级协调控制对比[J]. 电子科技, 2022, 35(7): 79-86. |
[9] | 仝小森,杨金显. 基于GRNN网络自适应滤波的钻具加速度去噪[J]. 电子科技, 2022, 35(7): 46-51. |
[10] | 巫付专,李昊阳,彭圣,陈蒙娜. APFC低压系统的研究与实现[J]. 电子科技, 2022, 35(4): 72-77. |
[11] | 袁庆庆,蒋敏,杨玉美. 非理想三相电网的特征信号提取[J]. 电子科技, 2022, 35(4): 78-86. |
[12] | 白锐,徐达,杨亮,孙从科,王绍东. 高集成小型化中频滤波组件设计与实现[J]. 电子科技, 2022, 35(2): 1-6. |
[13] | 李刚. 频变耦合双通带滤波器的综合方法[J]. 电子科技, 2022, 35(1): 1-5. |
[14] | 李哲辉,袁天辰,杨俭,宋瑞刚. 一种新型悬浮磁体结构的双自由度轨道车辆轴箱振动能量采集器[J]. 电子科技, 2022, 35(1): 12-20. |
[15] | 高尚,姚磊,李洋,李睿欣. 级联H桥电力电子变压器控制参数优化[J]. 电子科技, 2021, 34(11): 75-80. |
|