电子科技 ›› 2024, Vol. 37 ›› Issue (2): 36-45.doi: 10.16180/j.cnki.issn1007-7820.2024.02.006
冯露露,冯松,胡祥建,陈梦林,刘勇,王迪
收稿日期:
2022-08-25
出版日期:
2024-02-15
发布日期:
2024-01-18
作者简介:
冯露露(1996-),女,硕士研究生。研究方向:硅基光子调制器。|冯松(1982-),男,博士,教授。研究方向:硅基光子器件及集成。
基金资助:
FENG Lulu,FENG Song,HU Xiangjian,CHEN Menglin,LIU Yong,WANG Di
Received:
2022-08-25
Online:
2024-02-15
Published:
2024-01-18
Supported by:
摘要:
作为硅光子集成芯片中基本无源器件的硅基光波导是进行光信号传输的通道,其具有良好的性能,且与CMOS(Complementary Metal Oxide Semiconductor)工艺相兼容因而得到广泛应用。用于电信和数据中心的硅光子集成电路已逐步走向商业化。近年来,中红外波段在自由空间通信、传感以及环境监测等领域的潜在应用受到研究者们的广泛关注。文中分析了中红外硅基光波导的研究现状,归纳了SOI(Silicon on Insulator)、GOSI(Ge-on-SOI)、SOS(Si on Sapphire)、GOS(Ge-on-Si)、SGOS(SiGe-on-Si)、SON(Si-on Si3N4)、GON(Ge-on Si3N4)等波导材料平台和SOPS (Si on Porous Si)、Undercut、Pedestal、Freestanding、Suspended、LOCOS(Local Oxidation of Silicon)以及等离子体结构等制造工艺平台的研究成果。迄今为止,多数单晶硅在MIR(Mid-Infrared)平台的传播损耗大约在0.7~3.0 dB·cm-1。文中讨论并对比了不同类型波导的应用前景,为中红外硅基光波导的研发、应用和商业化提供了参考。
中图分类号:
冯露露,冯松,胡祥建,陈梦林,刘勇,王迪. 中红外硅基光波导的发展现状[J]. 电子科技, 2024, 37(2): 36-45.
FENG Lulu,FENG Song,HU Xiangjian,CHEN Menglin,LIU Yong,WANG Di. Research Status of Mid-Infrared Silicon-Based Optical Waveguides[J]. Electronic Science and Technology, 2024, 37(2): 36-45.
表1
不同材料平台的中红外光波导"
波导 类型 | 材料 平台 | 工作 波长/μm | 偏振 模式 | 传输 损耗/dB·cm-1 | 文献 出处 |
---|---|---|---|---|---|
strip | SOI | 3.800 | TE | 3.00 | [ |
strip | SOI | 3.800 | TE/TM | 3.40 | [ |
slot | SOI | 3.800 | TE | 1.40±0.20 | [ |
FSSWG | SOI | 2.200 | TE | 2.80 | [ |
strip | GOSI | 3.682 | TE/TM | 8.00 | [ |
Rib | SOS | 4.500 | TE | 4.30±0.60 | [ |
strip | SOS | 4.500 | TE | 0.74 | [ |
strip | SOS | 5.180 | TE | 1.92 | [ |
Rib | SOS | 5.500 | TE | 4.00±0.70 | [ |
Rib | GOS | 8.000~11.000 | TE/TM | <5.50 | [ |
Rib | GOS | 4.700 | TE/TM | 1.00 | [ |
strip | GOS | 5.800 | TE | 2.50 | [ |
Rib | GOS | 3.800 | TE | 2.70 | [ |
strip | SGOS | 4.500 | TE/TM | 1.00 | [ |
strip | SGOS | 7.400 | TE/TM | 2.00 | [ |
Rib | SGOS | 5.500~8.500 | TE/TM | 2.00~3.00 | [ |
Rib | SON | 3.390 | TE | 5.20±0.60 | [ |
Rib | SON | 3.390 | TM | 5.16±0.60 | [ |
Rib | GOSN | 3.800 | TE/TM | 3.35 | [ |
表2
不同结构平台的中红外光波导"
波导 类型 | 材料 平台 | 工作 波长/μm | 偏振 模式 | 传输 损耗/dB·cm-1 | 文献 出处 |
---|---|---|---|---|---|
SOPS | SOI | 3.39 | TE | 3.90 | [ |
Undercut | SOI | 10.60 | TE | 6.00 | [ |
pedestal | SOI | 3.70 | TE | 2.70 | [ |
pedestal | SOI | 7.10 | TE10 | 0.53 | [ |
freestanding | SOI | 5.50 | TE | 13.00~14.00 | [ |
Suspended | SOI | 7.67 | TE | 3.10±0.30 | [ |
Suspended | SOI | 3.80 | TE | 0.82 | [ |
Suspended Ge | GOS | 7.50 | TE | 2.50 | [ |
Suspended Ge | GOS | 7.70 | TE | 2.65 | [ |
LOCOS | SOI | 3.39 | TE | 1.40 | [ |
[1] |
Lavchiev V M, Jakoby B. Photonics in the mid-infrared:Challenges in single-chip integration and absorptionsensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2):452-463.
doi: 10.1109/JSTQE.2016.2619330 |
[2] |
Schliesser A, Picqué N, Hänsch T W. Mid-infrared freq-uency combs[J]. Nature Photonics, 2012, 6(7):440-449.
doi: 10.1038/nphoton.2012.142 |
[3] |
Labadie L, Wallner O. Mid-infrared guided optics:A perspective for astronomical instruments[J]. Optics Express, 2009, 17(3):1947-62.
pmid: 19189025 |
[4] |
Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics, 2010, 4(8):495-497.
doi: 10.1038/nphoton.2010.171 |
[5] |
Matavulj P S, Yang P Y, Bagolini A, et al. Rib waveguides for mid-infrared silicon photonics[J]. Journal of the Optical Society of America B, 2009, 26(9):1760-1766.
doi: 10.1364/JOSAB.26.001760 |
[6] | Nitkowski A, Bollond P, Dinu M, et al. Low-loss silicon-photonic devices for mid-infrared applications[C]. Reston: IEEE Photonics Conference, 2018:256-269. |
[7] | Soref R, Emelett S J, Buchwald W R. Silicon wave-guided components for the long-wave infrared region[J]. Journal of Optics A:Pure & Applied Optics, 2006, 8(10):840-848. |
[8] |
Kitamura R, Pilon L, Jonasz M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature[J]. Applied Optics, 2007, 46(33):8118-8133.
pmid: 18026551 |
[9] |
Roelkens G, Dave U, Gassenq A, et al. Silicon-based ph-otonic integration beyond the telecommunication wav-elength range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4):394-404.
doi: 10.1109/JSTQE.2013.2294460 |
[10] |
Smit M K, Dam C V. PHASAR-based WDM-devices: Principles,design and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(2):236-250.
doi: 10.1109/2944.577370 |
[11] |
Muneeb M, Chen X, Verheyen P, et al. Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm[J]. Optics Express, 2013, 21(10):11659-11669.
doi: 10.1364/OE.21.011659 pmid: 23736389 |
[12] | Labib M, Gad M, Sabry Y M, et al. Strip waveguide e-nabling low loss for silicon on silica technology in the MIR[C]. Cairo: The Thirteenth International Conference on Computer Engineering and Systems, 2018:323-331. |
[13] | Penades J S, Khokhar A, Nedeljkovic M, et al. Low-lossmid-infrared SOI slot waveguides[J]. IEEE Photonics Technology Letters, 2015, 27(11):1197-1199. |
[14] | Zhou W, Cheng Z, Wu X, et al. Fully suspended slot w-aveguide platform[J]. Journal of Applied Physics, 2018, 123(6):3103-3112. |
[15] |
Younis U, Vanga S K, Lim E J, et al. Germaniumon-SOI waveguides for mid-infrared wavelengths[J]. Optics Express, 2016, 24(11):11987-11993.
doi: 10.1364/OE.24.011987 pmid: 27410120 |
[16] |
Younis U, Lim E J, Lo G Q, et al. Propagation loss im-provement in Ge-on-SOI mid-infrared waveguides us-ing rapid thermal annealing[J]. IEEE Photonics Technology Letters, 2016, 28(21):2447-2450.
doi: 10.1109/LPT.2016.2600503 |
[17] |
Cheng Z, Chen X,Wong, et al. Mid-infrared grating cou-plers for silicon-on-sapphire waveguides[J]. IEEE Photonics Journal, 2012, 4(1):104-113
doi: 10.1109/JPHOT.2011.2179921 |
[18] |
Baehr-Jones T, Spott A, Ilic R, et al. Silicon-on-sapphire integrated waveguides for the mid-infrared[J]. Optics Express, 2010, 18(12):12127-12135.
doi: 10.1364/OE.18.012127 pmid: 20588335 |
[19] | Shankar R, Bulu I, Lončar M. Integrated high-quality factor silicon-on-sapphire ring resonators for the mid- infrared[J]. Applied Physics Letters, 2013, 102(5):495-505. |
[20] |
Li F, Jackson S D, Grillet C, et al. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared[J]. Optics Express, 2011, 19(16):15212-15220.
doi: 10.1364/OE.19.015212 pmid: 21934884 |
[21] | Yang L, Spott A, Baehr J T, et al. Silicon waveguides and ring resonators at 5.5 μm[C]. Beijing: The Seventh IEEE International Conference on Group IV Photonics, 2010:1129-1137. |
[22] |
Chang Y C P, Aede R V, Hvozdara L, et al. Low-loss germanium strip waveguides on silicon for the mid- infrared[J]. Optics Letters, 2012, 37(14):2883-2885.
doi: 10.1364/OL.37.002883 |
[23] | Anantha P, Zhang L, Li W, et al. Low propagation loss Ge-on-Si waveguides and their dependency on prossing methods[C]. Singapore: Conference on Lasers and Electro-Optics Pacific Rim, 2017:1-4. |
[24] | Millar R W, Gallacher K, Griskeviciute U, et al. Ge-on-Si mid-infrared waveguides operating up to 11 μm wavelength[C]. Cancun: IEEE the Fifteenth International Conference on Group IV Photonics, 2018:307-315. |
[25] | Malik A, Stanton E J, Liu J, et al. High performance 7×8 Ge-on-Si arrayed waveguide gratings for the mid-infrared[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6):1-8. |
[26] |
Brun M, Labeye P, Grand G, et al. Low loss SiGe graded index waveguides for mid-IR applications[J]. Optics Express, 2014, 22(1):508-518.
doi: 10.1364/OE.22.000508 pmid: 24515011 |
[27] |
Barritault P, Brun M, Labeye P, et al. Design fabrication and characterization of an AWG at 4.5 m[J]. Optics Express, 2015, 23(20):26168-26181.
doi: 10.1364/OE.23.026168 pmid: 26480131 |
[28] |
Ramirez J M, Liu Q, Vakarin V, et al. Graded SiGe wa-veguides with broadband low-loss propagation in themid infrared[J]. Optics Express, 2018, 26(2):870-877.
doi: 10.1364/OE.26.000870 pmid: 29401966 |
[29] | Khan S, Chiles J, Ma J, et al. Silicon-on-Nitride optical waveguides for mid and near-infrared integrated photonics[J]. Applied Physics Letters, 2013, 102(12):1-2. |
[30] | Mu J, Soref R, Kimerling L C, et al. Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding[J]. Applied Physics Letters, 2014, 104(3):1-4. |
[31] | Roelkens G, Abassi A, Cardile P, et al. III-V-on-Silicon photonic devices for optical communication and sensing[J]. IEEE Photonics Journal, 2015, 3(3):969-1004. |
[32] | Aalto T, Harjanne M, Cherchi M. VTT's micron-scale silicon rib+strip waveguide platform[C]. Brussels: SiliconPhotonics & Photonic Integrated Circuits V, 2016:918-927. |
[33] |
Komljenovic T, Davenport M, Hulme J, et al. Heterogen-eous silicon photonic integrated circuits[J]. Journal of Lightwave Technology, 2016, 34(1):20-35.
doi: 10.1109/JLT.2015.2465382 |
[34] | Li W, Anantha P, Bao S, et al. Modeling and fabricationof Ge-on-Si3N4 for low bend-loss waveguides[C]. Shanghai: IEEE the Thirteenth International Conference on Group IV Photonics, 2016:1133-1140. |
[35] | Li W, Anantha P, Bao S, et al. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics[J]. Applied Physics Letters, 2016, 109(24):1101-1106. |
[36] | Li W, Anantha P, Lee K H, et al. Spiral waveguides on germanium-on-silicon nitride platform for mid-IR sen-sing applications[J]. Photonics Journal, 2018, 10(3):1-7. |
[37] | Mashanovich G Z, Headley W R, Milosevic M, et al. Waveguides for mid-infrared group IV photonics[C]. Beijing: The Seventh IEEE International Conference on Group IV Photonics, 2010:8322-8328. |
[38] |
Wei Y X, Li G Y, Hao Y L, et al. Long-wave infrared 1×2 MMI based on air-gap beneath silicon rib wave-guides[J]. Optics Express, 2011, 19(17):15803-15812.
doi: 10.1364/OE.19.015803 |
[39] |
Lin P T, Singh V, Cai Y, et al. Air-clad silicon pedestal structures for broadband mid-infrared microphotonics[J]. Optics Letters, 2013, 38(7):1031-1033.
doi: 10.1364/OL.38.001031 pmid: 23546233 |
[40] |
He L, Guo Y, Han Z, et al. Loss reduction of silicon-on-insulator waveguides for deep mid-infrared applications[J]. Optics Letters, 2017, 42(17):3454-3457.
doi: 10.1364/OL.42.003454 pmid: 28957061 |
[41] |
Yang P Y, Stankovic S, Crnjanski J, et al. Silicon photonic waveguides for mid-and long-wave infrared region[J]. Journal of Materials Science: Materials in Electronics, 2009, 20(1):159-163.
doi: 10.1007/s10854-007-9497-9 |
[42] |
Soler P J, Sánchez-Postigo A, Nedeljkovic M, et al. Sus-pended silicon waveguides for long-wave infrared wavelengths[J]. Optics Letters, 2018, 43(4):795-798.
doi: 10.1364/OL.43.000795 |
[43] |
Sánchez-Postigo A, Wangüemert-Pérez J G, Soler Pena-dés J, et al. Mid-infrared suspended waveguide platform and building blocks[J]. IET Optoelectronics, 2018, 13(2):2-8.
doi: 10.1049/ote2.v13.1 |
[44] | Mashanovich G Z, Wu Y, Osman A, et al. Mid-infrared suspended group IV photonics[C]. Bari: The Twenty-second International Conference on Transparent Optical Networks, 2020:701-710. |
[45] |
Gamal R, Ismail Y, Swillam M A. Silicon waveguides at the mid-infrared[J]. Journal of Lightwave Technology, 2015, 33(15):3207-3214.
doi: 10.1109/JLT.2015.2410493 |
[1] | 王迪,冯松,陈梦林,刘勇,胡祥建,冯露露. SiGe电光调制器研究进展[J]. 电子科技, 2024, 37(2): 46-54. |
[2] | 李 刚1 ,胡 旭2. 滤波器腔间耦合系数快速提取方法[J]. , 2016, 29(11): 25-. |
[3] | 李培红. 无源器件的三阶互调研究及测试[J]. , 2015, 28(9): 112-. |
|